Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Simulations of Ionospheric Behavior Driven by HF Radio Waves at the Initial Stage

By Jing Chen, Qingliang Li, Yubo Yan, Haiqin Che, Guanglin Ma, and Guang Yuan
Progress In Electromagnetics Research C, Vol. 95, 153-166, 2019


This study explores the variability in the electric field, plasma number density, and plasma velocity driven by high-frequency (HF) radio wave injected into the vertically stratified ionosphere at a millisecond time scale after switch-on of the radio transmitter. It was found that the modeconversion process of electromagnetic (EM) waves took place at the reflection heights of both the R-X (right-circularly polarized extraordinary wave, R-X) and L-O (left-circularly polarized ordinary wave, L-O) modes. The ionospheric electron number density was remarkably oscillatory. A depletion of ionospheric ion number density at the L-O mode turning point and two ion number density peaks on each side of the O-mode reflection region were discovered. The turbulent layer of the ion density peak at the bottom of the critical height shifted downwards, which qualitatively conforms to the observations made at the Areciboand the EISCAT. The vertical electron velocity oscillated near the L-O mode reflection point. The vertical ion velocity remained positive above the reflection height of the L-O mode and remained negative below this height. These results, which were derived using realistic length scales, ion masses, pump waves, and other plasma parameters, are consistent with theoretical predictions and prior experimental observations, and should thus be useful for understanding the linear and nonlinear interactions between the HF EM wave and the ionospheric plasma at the initial stage.


Jing Chen, Qingliang Li, Yubo Yan, Haiqin Che, Guanglin Ma, and Guang Yuan, "Simulations of Ionospheric Behavior Driven by HF Radio Waves at the Initial Stage," Progress In Electromagnetics Research C, Vol. 95, 153-166, 2019.


    1. Kelley, M. C., The Earth's Ionosphere: Plasma Physics and Electrodynamics, Vol. 96, Academic Press, 2009.

    2. Bernhardt, P., W. A. Scales, S. Grach, A. Keroshtin, D. Kotik, and S. Polyakov, "Excitation of artificial airglow by high power radio waves from the "Sura" ionospheric heating facility," Geophys. Res. Lett., Vol. 18, 1477-1480, 1991.

    3. Carroll, J., E. Violette, and W. Utlaut, "The Platteville high power facility," Radio Sci., Vol. 9, 889-894, 1974.

    4. Kuo, S. and A. Snyder, "Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP," J. Geophys. Res. --- Space Phys., Vol. 118, 2734-2743, 2013.

    5. Robinson, T., F. Honary, A. Stocker, T. Jones, and P. Stubbe, "First EISCAT observations of the modification of F-region electron temperatures during RF heating at harmonics of the electron gyro frequency," Journal of Atmospheric and Terrestrial Physics, Vol. 58, 385-395, 1996.

    6. Wu, J., J. Wu, and Z. Xu, "Results of ionospheric heating experiments involving an enhancement in electron density in the high latitude ionosphere," Plasma Sci. Technol., Vol. 18, 890, 2016.

    7. Blagoveshchenskaya, N., T. Borisova, V. Kornienko, V. Frolov, M. Rietveld, and A. Brekke, "Some distinctive features in the behavior of small-scale arti¯cial ionospheric irregularities at mid-and high latitudes," Radiophys. Quantum Electron., Vol. 50, 619-632, 2007.

    8. Pedersen, T., M. McCarrick, B. Reinisch, B. Watkins, R. Hamel, and V. Paznukhov, "Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic," Ann. Geophys., Vol. 29, 2011.

    9. Kosch, M., T. Pedersen, M. Rietveld, B. Gustavsson, S. Grach, and T. Hagfors, "Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review," Adv. Space Res., Vol. 40, 365-376, 2007.

    10. Leyser, T., "Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma," Space Sci. Rev., Vol. 98, 223-328, 2001.

    11. Thide, B., H. Kopka, and P. Stubbe, "Observations of stimulated scattering of a strong high-frequency radio wave in the ionosphere," Phys. Rev. Lett., Vol. 49, 1561, 1982.

    12. Stubbe, P., H. Kohl, and M. Rietveld, "Langmuir turbulence and ionospheric modification," J. Geophys. Res. --- Space Phys., Vol. 97, 6285-6297, 1992.

    13. Gurevich, A. V., "Nonlinear effects in the ionosphere," Phys. Usp., Vol. 50, 1091-1121, 2007.

    14. Huang, J. and S. Kuo, "Cyclotron harmonic effect on the thermal oscillating two-stream instability in the high latitude ionosphere," J. Geophys. Res. --- Space Phys., Vol. 99, 2173-2181, 1994.

    15. Kuo, S., M. Lee, and P. Kossey, "Excitation of oscillating two stream instability by upper hybrid pump waves in ionospheric heating experiments at Tromso," Geophys. Res. Lett., Vol. 24, 2969-2972, 1997.

    16. Robinson, T., et al., "First CUTLASS-EISCAT heating results," Adv. Space Res., Vol. 21, 663-666, 1998.

    17. Djuth, F., P. Stubbe, M. Sulzer, H. Kohl, M. Rietveld, and J. Elder, "Altitude characteristics of plasma turbulence excited with the Tromso superheater," J. Geophys. Res. --- Space Phys., Vol. 99, 333-339, 1994.

    18. Wong, A., J. Santoru, and G. Sivjee, "Active stimulation of the auroral plasma," J. Geophys. Res. --- Space Phys., Vol. 86, 7718-7732, 1981.

    19. Robinson, T., "The heating of the high lattitude ionosphere by high power radio waves," Physics Reports, Vol. 179, 79-209, 1989.

    20. DuBois, D. F., H. A. Rose, and D. Russell, "Excitation of strong Langmuir turbulence in plasmas near critical density: Application to HF heating of the ionosphere," J. Geophys. Res. --- Space Phys., Vol. 95, 21221-21272, 1990.

    21. Frolov, V., L. Erukhimov, S. Metelev, and E. Sergeev, "Temporal behaviour of artificial small-scale ionospheric irregularities: Review of experimental results," J. Atmos. Sol.-Terr. Phys., Vol. 59, 2317-2333, 1997.

    22. Wong, A., T. Tanikawa, and A. Kuthi, "Observation of ionospheric cavitons," Physical Review Letters, Vol. 58, 1375, 1987.

    23. Vas' kov, V. and N. Ryabova, "Parametric excitation of high frequency plasma oscillations in the ionosphere by a powerful extraordinary radio wave," Adv. Space Res., Vol. 21, 697-700, 1998.

    24. Pandey, R. S. and D. Singh, "Study of electromagnetic ion-cyclotron instability in a magnetoplasma," Progress In Electromagnetics Research, Vol. 14, 147-161, 2010.

    25. Xiang, W., Z. Chen, M. Liu, F. Honary, B. Ni, and Z. Zhao, "Threshold of parametric instability in the ionospheric heating experiments," Plasma Sci. Technol., Vol. 20, 115301, 2018.

    26. Duncan, L. and J. Sheerin, "High-resolution studies of the HF ionospheric modification interaction region," J. Geophys. Res. --- Space Phys., Vol. 90, 8371-8376, 1985.

    27. Eliasson, B. and L. Stenflo, "Full-scale simulation study of stimulated electromagnetic emissions: The first ten milliseconds," J. Plasma Phys., Vol. 76, 369-375, 2010.

    28. Djuth, F., B. Isham, M. Rietveld, T. Hagfors, and C. La Hoz, "First 100 ms of HF modification at Tromso, Norway," J. Geophys. Res. --- Space Phys., Vol. 109, 2004.

    29. Isham, B., W. Birkmayer, T. Hagfors, and W. Kofman, "Observations of small-scale plasma density depletions in Arecibo HF heating experiments," J. Geophys. Res. --- Space Phys., Vol. 92, 4629-4637, 1987.

    30. Cros, B., J. Godiot, G. Matthieussent, and A. Heron, "Laboratory simulation of ionospheric heating experiment," Geophys. Res. Lett., Vol. 18, 1623-1626, 1991.

    31. Eliasson, B., X. Shao, G. Milikh, E. V. Mishin, and K. Papadopoulos, "Numerical modeling of artificial ionospheric layers driven by high-power HF heating," J. Geophys. Res. --- Space Phys., Vol. 117, 2012.

    32. Goodman, S., H. Usui, and H. Matsumoto, "Particle-in-cell (PIC) simulations of electromagnetic emissions from plasma turbulence," Phys. Plasmas, Vol. 1, 1765-1767, 1994.

    33. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, 1966.

    34. Simpson, J. J., "On the possibility of high-level transient coronal mass ejection --- induced ionospheric current coupling to electric power grids," J. Geophys. Res. --- Space Phys., Vol. 116, 2011.

    35. Cummer, S. A., "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. Antennas Propag., Vol. 45, 392-400, 1997.

    36. Wang, M.-Y., J. Xu, J. Wu, B. Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.

    37. Simpson, J. J. and A. Taflove, "A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz," IEEE Trans. Antennas Propag., Vol. 55, 1582-1590, 2007.

    38. Young, J., "A full finite difference time domain implementation for radio wave propagation in a plasma," Radio Sci., Vol. 29, 1513-1522, 1994.

    39. Yu, Y. and J. J. Simpson, "An EJ collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Trans. Antennas Propag., Vol. 58, 469-478, 2010.

    40. Blaunstein, N. and E. Plohotniuc, Ionosphere and Applied Aspects of Radio Communication and Radar, CRC Press, 2008.

    41. Rawer, K., Wave Propagation in the Ionosphere, Vol. 5, Springer Science & Business Media, 2013.

    42. Fletcher, C. A., "Computational galerkin methods," Computational Galerkin Methods, Springer, Berlin, 1984.

    43. Carlson, H. C., W. E. Gordon, and R. L. Showen, "High frequency induced enhancements of the incoherent scatter spectrum at Arecibo," Journal of Geophysical Research, Vol. 77, 1242-1250, 1972.

    44. Depierreux, S., C. Labaune, J. Fuchs, D. Pesme, V. Tikhonchuk, and H. Baldis, "Langmuir decay instability cascade in laser-plasma experiments," Physical Review Letters, Vol. 89, 045001, 2002.

    45. Bryers, C., M. Kosch, A. Senior, M. Rietveld, and T. Yeoman, "The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT," J. Geophys. Res. --- Space Phys., Vol. 118, 7472-7481, 2013.

    46. Bernhardt, P., C. Tepley, and L. Duncan, "Airglow enhancements associated with plasma cavities formed during ionospheric heating experiments," J. Geophys. Res. --- Space Phys., Vol. 94, 9071-9092, 1989.

    47. Cheng, M., et al., "Observation of VHF incoherent scatter spectra disturbed by HF heating," J. Atmos. Sol.-Terr. Phys., Vol. 105, 245-252, 2013.