In this paper, we present a broadband flexible RFID sensor tag antenna to detect the concentration of aqueous solutions. The proposed RFID tag antenna sensor with a T matching network is based on a printed dipole whose arms are loaded with circular disk patches. The structure is printed on a Kapton polyimide flexible substrate. The sensing mechanism of the RFID tag antenna is based on the change of sensitivity of the RFID tag antenna that occurs with the variation of aqueous solution concentration. The proposed sensor is designed using CST Microwave studio, and its various parameters are optimized in order to have a broadband impedance matching that covers the entire RFID band (860-960 MHz). The experimental setup is small, rapid, contactless, and inexpensive. Results are presented for NaCl and sugar aqueous solutions with concentrations ranging from 0% to 80%.
2. Webb, M., et al., "Cost effectiveness of a government supported policy strategy to decrease sodium intake: Global analysis across 183 nations," Br. Med. J., Vol. 356, i6699, 2017.
doi:10.1136/bmj.i6699
3. Johnson, R. J., M. S. Segal, Y. Sautin, T. Nakagawa, D. I. Feig, D.-H. Kang, M. S. Gersch, S. Benner, and L. G. Sanchez-Lozada, "Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease," The American Journal of Clinical Nutrition, Vol. 86, No. 4, 899-906, Oct. 2007.
4. Islam, M. T., M. N. Rahman, M. S. J. Singh, and M. Samsuzzaman, "Detection of salt and sugar contents in water on the basis of dielectric properties using microstrip antenna-based sensor," IEEE Access, Vol. 6, 4118-4126, 2018.
doi:10.1109/ACCESS.2017.2787689
5. Gennarelli, G., S. Romeo, M. R. Scarfi, and F. Soldovieri, "A microwave resonant sensor for concentration measurements of liquid solutions," IEEE Sensors Journal, Vol. 13, No. 5, 1857-1864, May 2013.
doi:10.1109/JSEN.2013.2244035
6. Albishi, A. M. and O. M. Ramahi, "Highly sensitive microwaves sensors for fluid concentration measurements," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 4, 287-289, Apr. 2018.
doi:10.1109/LMWC.2018.2805866
7. Finkenzeller, K., RFID Handbook: `Radio-frequency Identification Fundamentals and Applications', 2nd Ed., Wiley, New York, NY, USA, 2004.
8. Marrocco, G., L. Mattioni, and C. Calabrese, "Multiport sensor RFIDs for wireless passive sensing of objects --- Basic theory and early results," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2691-2702, Aug. 2008.
doi:10.1109/TAP.2008.927541
9. Occhiuzzi, C., C. Paggi, and G. Marrocco, "Passive RFID strain-sensor based on meander-line antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4836-4840, Dec. 2011.
doi:10.1109/TAP.2011.2165517
10. Kalansuriya, P., R. Bhattacharyya, and S. Sarma, "RFID tag antenna-based sensing for pervasive surface crack detection," IEEE Sensors Journal, Vol. 13, No. 5, 1564-1570, May 2013.
doi:10.1109/JSEN.2013.2240155
11. Kim, S., Y. Kawahara, A. Georgiadis, A. Collado, and M. M. Tentzeris, "Low-cost inkjet-printed fully passive RFID tags for calibration-free capacitive/haptic sensor applications," IEEE Sensors Journal, Vol. 15, No. 6, 3135-3145, Jun. 2015.
doi:10.1109/JSEN.2014.2366915
12. Wu, X., et al., "Design of a humidity sensor tag for passive wireless applications," Sensors, Vol. 15, No. 10, 25564-25576, Basel, Switzerland, Oct. 7, 2015.
doi:10.3390/s151025564
13. Caizzone, S., E. Di Giampaolo, and G. Marrocco, "Constrained pole-zero synthesis of phase-oriented RFID sensor antennas," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 496-503, Feb. 2016.
doi:10.1109/TAP.2015.2511788
14. Escobedo, P., et al., "Passive UHF RFID tag for multispectral assessment," Sensors, Vol. 16, No. 7, 1085, Basel, Switzerland, Jul. 14, 2016.
doi:10.3390/s16071085
15. Fernandez-Salmeron, J., et al., "Passive UHF RFID tag with multiple sensing capabilities," Sensors, Vol. 15, No. 10, 26769-26782, Basel, Switzerland, Oct. 22, 2015.
doi:10.3390/s151026769
16. Chen, X., L. Ukkonen, and T. Bjorninen, "Passive E-textile UHF RFID-based wireless strain sensors with integrated references," IEEE Sensors Journal, Vol. 16, No. 22, 7835-7836, Nov. 15, 2016.
doi:10.1109/JSEN.2016.2608659
17. Bhattacharyya, R., C. Floerkemeier, and S. Sarma, "Low-cost, ubiquitous RFID-tag-antenna-based sensing," Proceedings of the IEEE, Vol. 98, No. 9, 1593-1600, Sep. 2010.
doi:10.1109/JPROC.2010.2051790
18. Buchner, R., G. T. Hefter, and P. M. May, "Dielectric relaxation of aqueous NaCl solutions," J. Phys. Chem. A, Vol. 103, 1-9, 1999.
doi:10.1021/jp982977k
19. Malmberg, C. G. and A. A. Maryott, "Dielectric constants of aqueous solutions of dextrose and sucrose," Journal of Research of the National Bureau of Standards, Vol. 45, No. 4, Oct. 1950.
20., http://www.murata.com/»/media/webrenewal/support/library/catalog/products/k70e.ashx.
21. Daiki, M., H. Chaabane, E. Perret, S. Tedjni, and T. Aguili, "RFID chip impedance measurement for UHF tag design," PIERS 2011 in Marrakesh Proceedings, 679, Marrakesh, Morocco, Mar. 20-23, 2011.
22. Miron, D. B., Small Antenna Design, Newnes, Burlington, MA, USA, 2006.
23. Terman, F. E., Radio Engineer's Handbook, McGraw-Hill, New York, 1945.
24., http://www.triumphlaser.com/laser-cutting-system/.
25. Qing, X., C. K. Goh, and Z. N. Chen, "Impedance characterization of RFID tag antennas and application in tag co design," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1268-1274, May 2009.
doi:10.1109/TMTT.2009.2017288
26. Kraus, J. D. and R. J. Marhefka, Antennas, 3rd Ed., Chapter 13, McGraw-Hill, 2002.
27. Deleruyelle, T., P. Pannier, M. Egels, and E. Bergeret, "Dual band mono-chip HF-UHF tag antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, Canada, Jul. 2010.
28. Colella, R., L. Catarinucci, P. Coppola, and L. Tarricone, "Measurement platform for electromagnetic characterization and performance evaluation of UHF RFID tags," IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 4, 905-914, Apr. 2016.
doi:10.1109/TIM.2016.2516322