Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Motion Compensation Algorithm for Single Track FMCW CSAR by Parametric Sparse Representation

By Depeng Song, Binbing Li, Yi Qu, and Yijun Chen
Progress In Electromagnetics Research C, Vol. 95, 265-279, 2019


In recent years, FMCW CSAR (frequency modulation continue wave circular synthetic aperture radar) is more and more widely used in military reconnaissance and sea surface target recognition. However, due to the influence of external factors, it cannot move in an ideal uniform circular trajectory, resulting in low imaging resolution. In this paper, the problem of motion errors caused by nonuniform circular motion is analyzed, and the phenomenon of range unit broadening and sidelobe increase caused by nonuniform circular motion errors is simulated. The echo model is characterized by error parameters. Based on the compressed sensing imaging algorithm, motion error parameters are estimated by parametric sparse representation. The least squares method and gradient descent method are applied to estimate motion error parameters. Simulations are conducted to show that both of the methods can reach the goal that the motion compensation is realized. The result of simulations and measurement data demonstrate that the algorithm can correct nonuniform circular motion errors better and further improve the imaging resolution.


Depeng Song, Binbing Li, Yi Qu, and Yijun Chen, "Motion Compensation Algorithm for Single Track FMCW CSAR by Parametric Sparse Representation," Progress In Electromagnetics Research C, Vol. 95, 265-279, 2019.


    1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, USA, 2005.

    2. Tang, S., et al., "Processing of monostatic SAR data with general configurations," IEEE Trans. Geosci. Remote Sens., Vol. 12, No. 53, 6529-6546, 2015.

    3. Prats-Iraola, P., et al., "On the processing of very high resolution spaceborne SAR data," Trans. Geosci. Remote Sens., Vol. 10, No. 52, 6003-6016, 2014.

    4. Lopez-Dekker, P., M. Rodriguez-Cassola, F. De Zan, G. Krieger, and A. Moreira, "Correlating synthetic aperture radar (CoSAR)," IEEE Trans. Geosci. Remote Sens., Vol. 4, No. 54, 2268-2284, 2016.

    5. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geosci. Remote Sens., Vol. 3, No. 1, 6-43, 2013.

    6. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Transactions on Signal Processing, Vol. 63, No. 10, 2650-2662, 2015.

    7. Ciuonzo, D., "On time-reversal imaging by statistical testing," IEEE Transactions on Signal Processing Letters, Vol. 24, No. 4, 1024-1028, 2017.

    8. Ciuonzo, D., V. Carotenuto, and A. De Maio, "On multiple covariance equality testing with application to SAR change detection," IEEE Transactions on Signal Processing, Vol. 65, No. 19, 5078-5091, 2017.

    9. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Transactions on Image Processing, Vol. 5, No. 8, 1252-1265, 1996.

    10. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, New York, 1999.

    11. Ao, D., R. Wang, C. Hu, and Y. Li, "A sparse SAR imaging method based on multiple measurement vectors model," Remote Sens., Vol. 9, No. 297, 1-22, 2017.

    12. Jia, G., W. Chang, Q. Zhang, and X. Luan, "The analysis and realization of motion compensation for circular synthetic aperture radar data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 4, 3060-3071, 2016.

    13. Guo, Z. Y., Y. Lin, W. X. Tan, Y. P. Wang, and W. Hong, "Circular SAR motion compensation using trilateration and phase correction," IET International Radar Conference, 1-6, 2013.

    14. Xie, H., et al., "Fast factorized backprojection algorithm for one-stationary bistatic spotlight circular SAR image formation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 4, 1494-1510, 2017.

    15. Zhang, B., X. Zhang, and S. Wei, "A circular SAR image autofocus algorithm based on minimum entropy," 2015 IEEE 5th Asia-Paci¯c Conference on Synthetic Aperture Radar (APSAR), 152-155, 2015.

    16. Lin, Y., W. Hong, and W. Tan, "Compressed sensing technique for circular SAR imaging," 2009 IET International Radar Conference, 1-4, 2009.

    17. Wang, X., B. Deng, H. Wang, and Y. Qi, "Ground moving target imaging based on motion compensation for circular SAR," 2017 9th International Conference on Advanced Infocomm Technology, 372-377, 2017.

    18. Chen, Y.-C., G. Li, Q. Zhang, Q.-J. Zhang, and X.-G. Xia, "Motion compensation for airborne SAR via parametric sparse representation," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 1, 551-561, 2017.

    19. Rao, W., G. Li, X. Wang, and X.-G. Xia, "Parametric sparse representation method for ISAR imaging of rotating targets," IEEE Trans. Aerosp. Electron. Syst., Vol. 2, No. 50, 910-919, 2014.

    20. Li, X., S. Liu, and W. Xie, "A novel conjugate gradient method for sensing matrix optimization for compressed sensing systems," Journal of Zhejiang University (Science Edition), Vol. 46, No. 1, 15-21, 2019.