Vol. 96
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-25
Design of Dual-Mode Band-Pass Filter with Novel Perturbation Elements
By
Progress In Electromagnetics Research C, Vol. 96, 59-71, 2019
Abstract
A compact square patch band-pass filter is proposed in this paper. The dual-mode filter is designed based on a square patch resonator with a complementary split ring resonator (CSRR) split to be used as a perturbation element. The CSRR split is properly embedded in the square patch resonator to perturb electric current distribution on this patch and thus to simultaneously excite a pair of degenerate modes. Using the proposed CSRR elements, the band-pass filter is designed with miniaturized size, and two transmission zeros in stopbands are achieved to improve the selectivity of the filter. The influence of the CSRR elements on the band-pass filter is analyzed in detail. The proposed dual-mode filter is then fabricated and measured. Good agreement over a wide frequency range is achieved between the simulated and measured results. Moreover, in order to further investigate the characteristic of the dual-mode patch filters with CSRR perturbation, a dual-mode filter with a rectangular ring slot is presented for comparative study.
Citation
Yong Cheng Chengjun Mei Lei Zhu , "Design of Dual-Mode Band-Pass Filter with Novel Perturbation Elements," Progress In Electromagnetics Research C, Vol. 96, 59-71, 2019.
doi:10.2528/PIERC19061708
http://www.jpier.org/PIERC/pier.php?paper=19061708
References

1. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., Vol. 8, No. 12, 302-303, June 1972.
doi:10.1049/el:19720223

2. Chen, J. X., J. Li, and J. Shi, "Miniaturized dual-band differential filter using dual-mode dielectric resonator," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 8, 657-659, Jun. 2018.
doi:10.1109/LMWC.2018.2842681

3. Gomez-Garcıa, R., J.-M. Munoz-Ferreras, and W. J. Feng, "Balanced symmetrical quasi-reflectionless single-and dual-band band-pass planar filters," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 9, 798-800, Aug. 2018.
doi:10.1109/LMWC.2018.2856400

4. Choudhury, S. R., A. Sengupta, and S. Das, "Band-pass filters using multilayered microstrip structures," 2018 Emerging Trends in Electronic Devices and Computational Techniques (EDCT), 8-9, Kolkata, 2018.

5. Hong, J. S. and M. J. Lancaster, "Microstrip band-pass filter using degenerate modes of a novel meander loop resonator," IEEE Microwave and Guided Wave Letters, Vol. 5, No. 11, 371-372, Nov. 1995.
doi:10.1109/75.473539

6. Cheng, K.-K. M., "Design of dual-mode ring resonators with transmission zeros," Electronics Letters, Vol. 33, No. 16, 1392-1393, Jul. 1997.
doi:10.1049/el:19970947

7. Das, T. K. and S. Chatterjee, "Harmonic suppression in an in-line Chebyshev band-pass filter by asymmetrical perturbations," 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), 11-13, Ahmedabad, 2017.

8. Sung, Y., "Compact and low insertion loss dual-mode band-pass filter," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3201-3206, Dec. 2008.
doi:10.1002/mop.23902

9. Zhang, R. Q., L. Zhu, and S. Luo, "Dual-mode dual-band bandpass filter using a single slotted circular patch resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 5, 233-235, Apr. 2012.
doi:10.1109/LMWC.2012.2192419

10. La, D. S., X. L. Ma, H. Y. Chen, and Y. P. Wu, "Novel dual-mode patch band-pass filters with slot structures," Microwave and Optical Technology Letters, Vol. 54, No. 9, 2130-2133, Sept. 2012.
doi:10.1002/mop.27002

11. Akgun, O., B. S. Teekici, and A. Gorur, "Reduced-size dual-mode slotted patch resonator for lowloss and narrowband band-pass filter applications," Electronics Letters, Vol. 40, No. 20, 1275-1277, Sept. 2004.
doi:10.1049/el:20045840

12. Huang, J. Q. and Q. X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403

13. Pendry, J. B., J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, Dec. 1999.
doi:10.1109/22.798002

14. Bonache, J., F. Mart´ın, F. Falcone, and J. D. Baena, "Application of complementary splitring resonators to the design of compact narrow band-pass structures in microstrip technology," Microwave and Optical Technology Letters, Vol. 46, No. 5, 508-512, Sept. 2005.
doi:10.1002/mop.21031

15. Zhang, Q. L., W. Y. Yin, and S. He, "Evanescent-mode Substrate Integrated Waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307

16. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, 256-258, John Wiley & Sons, Inc. , New York, 2001.
doi:10.1002/0471221619