Vol. 99
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-26
Indium Tin Oxide Based Wideband Dielectric Resonator Antenna for Wireless Communication
By
Progress In Electromagnetics Research C, Vol. 99, 77-86, 2020
Abstract
In this paper, a novel dielectric resonator antenna has been numerically simulated and experimentally demonstrated. The proposed design, comprising an Indium Tin Oxide (ITO) coated glass slide placed on a microstrip transmission line, is intended for WLAN and Wi-Max applications. The antenna shows a maximum bandwidth of 2.15-7.65 GHz and 10.36-11.78 GHz and a gain ranging from 2.21 to 6.44 dB. The novelty of the design lies in the use of ITO coating on glass to enhance as well as regulate the antenna bandwidth. Parametric variations have been investigated to analyse the topology for understanding the effect of the design parameters on gain, bandwidth, and reflection coefficient. A prototype has also been fabricated, where different ITO sheets have been mounted to measure the response. The proposed geometry has been found to be better and competent enough with respect to antenna parameters than existing Ultrawide Band antennas.
Citation
Vivek Parimi, Sajal Biring, Chia Hao Ku, Abhirup Datta, and Somaditya Sen, "Indium Tin Oxide Based Wideband Dielectric Resonator Antenna for Wireless Communication," Progress In Electromagnetics Research C, Vol. 99, 77-86, 2020.
doi:10.2528/PIERC19071603
References

1. Holt, K., "Wireless LAN: Past, present, and future," Proc. DATE, 2005.

2. Nuaymi, L., "WiMAX: Technology for broadband wireless access,", [Online], Available: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470319055, May 2007.

3. Chen, Z. N., X. Qing, T. S. P. See, and W. K. Toh, "Antennas forWiFi connectivity," Proc. IEEE, 2322-2329, 2012.
doi:10.1109/JPROC.2012.2183830

4. Cicchetti, R., E. Miozzi, and O. Testa, "Wideband and UWB antennas for wireless applications: A comprehensive review," International Journal of Antennas and Propagation, 1-45, [Online], Available: https://doi.org/10.1155/2017/2390808, February 2017.

5. Liu, Y., L.-M. Si, M. Wei, P. Yan, P. Yang, H. Lu, C. Zheng, Y. Yuan, J. Mou, X. Lv, and H. Sun, "Some recent developments of microstrip antenna," International Journal of Antennas and Propagation, 1-10, [Online], Available: http://dx.doi.org/10.1155/2012/428284, January 2012.

6. Soren, D., R. Ghatak, R. K. Mishra, and D. R. Poddar, "Dielectric resonator antennas: Designs and advances," Progress In Electromagnetics Research B, Vol. 60, 195-213, 2014.
doi:10.2528/PIERB14031306

7. Lim, E. H. and K. W. Leung, "Use of the dielectric resonator antenna as a filter element," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 5-10, 2008, [Online], Available: https://www.researchgate.net/publication/3019516 Use of the Dielectric Resonator Antenna as_a Filter Element.
doi:10.1109/TAP.2007.913152

8. Leung, K. W., K. M. Luk, K. Y. A. Lai, and D. Lin, "Theory and experiment of a coaxial probe fed hemispherical dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1390-1398, October 1993, [Online], Available: http://dx.doi.org/10.1155/2016/6075680.
doi:10.1109/8.247779

9. Petosa, A., A. Ittipiboon, and M. Cuhaci, "Dielectric resonator antenna technology for wireless applications," 1998 IEEE-APS CAPWC, 117-120, 1998.

10. Parimi, V. M., A. Datta, S. Biring, C. H. Ku, and S. Sen, "Simple dielectric resonator antennas using ITO, Al and Ag coated glass on a transmission line," AIP Conference Proceedings 2100, 020097, April 2019, Available: https://doi.org/10.1063/1.5098651.

11. Mandal, K. and P. P. Sarkar, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2279-2282, April 2013, [Online], Available: http://www.academia.edu/30138505/High Gain Wide-Band U-Shaped_Patch Antennas With Modified Ground Planes.
doi:10.1109/TAP.2012.2233455

12. Verma, S. and P. Kumar, "Printed Newton’s egg curved monopole antenna for ultrawideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 4, 278-286, November 2013, [Online], Available: https://digital-library.theiet.org/content/journals/10.1049/iet-map.2013.0144.
doi:10.1049/iet-map.2013.0144

13. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, June 2012.
doi:10.2528/PIER12032604

14. Rani, M. S. A., S. K. A. Rahim, M. R. Kamarudin, T. Peter, S. W. Cheung, and B. M. Saad, "Electromagnetic behaviors of thin film CPW-fed CSRR loaded on UWB transparent antenna," IEEE Transactions on Antennas and Propagation, Vol. 13, 1239-1242, July 2014, [Online] Available: https://doi.org/10.1109/LAWP.2014.2332514.

15. Alibakhshi-Kenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, and B. S. Virdee, "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 1, 88-96, September 2015, [Online], Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mmce.20942.
doi:10.1002/mmce.20942

16. Islam, M. M., M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, "Compact metamaterial antenna for UWB applications," Electronics Letters, Vol. 51, No. 16, 1222-1224, August 2015, [Online], Available: https://ukm.pure.elsevier.com/en/publications/compact-metamaterial-antenna-for-uwb-applications.
doi:10.1049/el.2015.2131

17. Ge, Y., K. P. Esselle, and T. S. Bird, "Compact dielectric resonator antennas with ultrawide 60%–110% bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3445-3448, July 2011, [Online], Available: https://doi.org/10.1109/TAP.2011.2161538.
doi:10.1109/TAP.2011.2161538

18. Cicchett, R., A. Faraon, E. Miozzi, R. Ravanelli, and O. Testa, "A high-gain mushroom-shaped dielectric resonator antenna for wideband wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2848-2861, April 2016, [Online], Available: https://ieeexplore.ieee.org/document/7463018.
doi:10.1109/TAP.2016.2560920