Vol. 96
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-11-03
Gain Equalized Three Antenna Pattern Diversity Module for WLAN Access Points
By
Progress In Electromagnetics Research C, Vol. 96, 215-227, 2019
Abstract
This paper demonstrates a three-port coaxial fed antenna system for wireless local area network (WLAN) access points, consisting of two dipoles and a patch, radiating at 5.2 GHz with impedance bandwidth of 150 MHz. The antennas are designed for pattern diversity in the end-fire and broadside orientation with an individual gain of 4.5 dBi, which is further enhanced to 6 dBi after integrating with unit-cell structures. The gain enhancement for individual antennas is achieved by strategically integrating transmission type and reflective type sub-wavelength structures for patch and dipoles respectively. The realized ground plane is shared among the three antennas. The measured results show that the return loss of the antennas is unaffected by the unit-cell loading and has an isolation of less than 26 dB throughout the band and across the ports for a port-to-port distance of 0.25λ.
Citation
Somanatha Pai Swapna, Gulur Sadananda Karthikeya, Shiban Kishen Koul, and Ananjan Basu, "Gain Equalized Three Antenna Pattern Diversity Module for WLAN Access Points," Progress In Electromagnetics Research C, Vol. 96, 215-227, 2019.
doi:10.2528/PIERC19072706
References

1. Kim, J. and I. Lee, "802.11 WLAN: History and new enabling MIMO techniques for next generation standards," IEEE Communications Magazine, Vol. 53, No. 3, 134-140, Mar. 2015.
doi:10.1109/MCOM.2015.7060495

2. Jaeck, V., L. Bernard, K. Mahdjoubi, R. Sauleau, S. Collardey, P. Pouliguen, and P. Potier, "A conical patch antenna array for agile point-to-point communications in the 5.2-GHz band," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1230-1233, Dec. 2016.
doi:10.1109/LAWP.2015.2502724

3. Bartz, R. J., Mobile Computing Deployment and Management: Real World Skills for CompTIA Mobility Certification and Beyond, Wiley, 2015.

4. Chou, H. and H. Su, "Dual-band hybrid antenna structure with spatial diversity for DTV and WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, 4850-4853, Sep. 2017.
doi:10.1109/TAP.2017.2723922

5. Saurav, K., N. K. Mallat, and Y. M. M. Antar, "A three-port polarization and pattern diversity ring antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1324-1328, Jul. 2018.
doi:10.1109/LAWP.2018.2844170

6. Abdalrazik, A., A. S. A. El-Hameed, and A. B. Abdel-Rahman, "A three-port mimo dielectric resonator antenna using decoupled modes," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3104-3107, 2017.
doi:10.1109/LAWP.2017.2763426

7. Fang, X. S., K. W. Leung, and K. M. Luk, "Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 4945-4951, Oct. 2014.
doi:10.1109/TAP.2014.2341698

8. Wang, H., L. Liu, Z. Zhang, Y. Li, and Z. Feng, "Ultra-compact three-port mimo antenna with high isolation and directional radiation patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1545-1548, 2014.
doi:10.1109/LAWP.2014.2344104

9. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for wlan applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2017.
doi:10.1109/LAWP.2016.2626394

10. Kwon, O., R. Song, and B. Kim, "A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 600-603, Apr. 2018.
doi:10.1109/LAWP.2018.2805681

11. Kim, S. and J. Kim, "A circularly polarized high-gain planar 2 x 2 dipole-array antenna fed by a 4-way Gysel power divider for wlan applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 1051-1055, May 2019.
doi:10.1109/LAWP.2019.2909041

12. Han, W., X. Zhou, J. Ouyang, Y. Li, R. Long, and F. Yang, "A six-port mimo antenna system with high isolation for 5-GHz WLAN access points," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 880-883, 2014.
doi:10.1109/LAWP.2014.2310739

13. Zhang, Y., Y. Zhang, D. Li, K. Liu, and Y. Fan, "Dual-polarized band-notched antenna without extra circuit for 2.4/5 GHz WLAN applications," IEEE Access, Vol. 7, 84 890-84 896, 2019.
doi:10.1109/ACCESS.2019.2924494

14. Ghahremani, M., C. Ghobadi, J. Nourinia, M. S. Ellis, F. Alizadeh, and B. Mohammadi, "Miniaturised UWB antenna with dual-band rejection of WLAN/WiMAX using slitted EBG structure," IET Microwaves, Antennas Propagation, Vol. 13, No. 3, 360-366, 2019.
doi:10.1049/iet-map.2018.5674

15. Bhartia, P., I. Bahl, R. Garg, and A. Ittipiboon, Microstrip Antenna Design Handbook (Artech House Antennas and Propagation Library), ser. Artech House Antennas and Propagation Library, Artech House Publishers, 2000.

16. Hamid, M. and R. Hamid, "Equivalent circuit of dipole antenna of arbitrary length," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1695-1696, Nov. 1997.
doi:10.1109/8.650083

17. Ansarizadeh, M., A. Ghorbani, and R. A. Abd-Alhameed, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403

18. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, Hoboken, NJ, 2005.

19. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

20. Latif, S. I. and L. Shafai, "Pattern equalization of circular patch antennas using different substrate permittivities and ground plane sizes," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3502-3511, Oct. 2011.
doi:10.1109/TAP.2011.2163775

21. Wu, C., K. Wu, Z. Bi, and J. Litva, "Modelling of coaxial-fed microstrip patch antenna by finite difference time domain method," Electronics Letters, Vol. 27, No. 19, 1691-1692, Sep. 1991.
doi:10.1049/el:19911053

22. Waterhouse, R., Printed Antennas for Wireless Communications, 1st Ed., ser. RSP, Wiley, 2007.
doi:10.1002/9780470512241

23. Kim, J. H., C. Ahn, and J. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, Mar. 2016.
doi:10.1109/TAP.2016.2518650

24. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

25. Chen, K., Z. Yang, and T. Jiang, "Improving microwave antenna gain and bandwidth with phase compensation metasurface," AIP Advances, Vol. 5, No. 6, 1695-1696, Jun. 2015.

26. Naqvi, A. H. and S. Lim, "A beam-steering antenna with a uidically programmable metasurface," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3704-3711, Jun. 2019.
doi:10.1109/TAP.2019.2905690

27. Roshna, T. K., U. Deepak, and P. Mohanan, "Compact UWB MIMO antenna for tridirectional pattern diversity characteristics," IET Microwaves, Antennas Propagation, Vol. 11, No. 14, 2059-2065, 2017.
doi:10.1049/iet-map.2016.0921

28. Yang, K., X. Bao, P. McEvoy, and M. J. Ammann, "Pattern reconfigurable back-to-back microstrip patch antenna," IET Microwaves, Antennas Propagation, Vol. 10, No. 13, 1390-1394, 2016.
doi:10.1049/iet-map.2015.0814

29. Malik, J., A. Patnaik, and M. V. Kartikeyan, "Novel printed mimo antenna with pattern and polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 739-742, 2015.
doi:10.1109/LAWP.2014.2377784

30. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable UWB antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103

31. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703