Vol. 96
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-10-26
A Microfluidic Sensor Based on Meta-Surface Absorber for Rapid and Nondestructive Identification of Edible Oil Species
By
Progress In Electromagnetics Research C, Vol. 96, 153-163, 2019
Abstract
In this paper, a sensor based on a meta-surface absorber loaded with microfluidics is proposed foridentification of edible oil species and provides a non-destructive, rapid and convenient technology for the measured samples. First, a narrow-band absorber with absorption frequency of 9.887 GHz and Q value of 147, which is implemented with four W-shaped meander line resonators, is designed by Finite Element Method. Its corresponding electromagnetic resonance mechanism is explored to reveal absorption characteristics, build its corresponding equivalent circuit model and guide the design of the palindromic microfluidic channel. The sensor shows a high sensitivity of 500 MHz/ε'r, and the corresponding sensing performance is experimentally validated by the fact that the distinguishableresonance absorption frequency shift is 461 MHz, 458 MHz, 449 MHz, 444 MHz and 436 MHz when rapeseed oil, corn oil, peanut oil, sesame oil, and olive oil are loaded into the microfluidic channel, respectively. The identificationis successfully achievedaccording to the resonance absorption frequency shift. Moreover, a good agreement between the simulated and measured results demonstrates that the proposed meta-surface-inspired sensor is a promising candidate to monitor and determine the quality of edible oil to some extent, and is relatively valuable to the modern agriculture and food industry.
Citation
Jie Huang Jun-Shan Li Guoqing Xu Zhihua Wei , "A Microfluidic Sensor Based on Meta-Surface Absorber for Rapid and Nondestructive Identification of Edible Oil Species," Progress In Electromagnetics Research C, Vol. 96, 153-163, 2019.
doi:10.2528/PIERC19081601
http://www.jpier.org/PIERC/pier.php?paper=19081601
References

1. Jakoby, B., G. Art, and J. Bastemeijer, "Novel analog readout electronics for microacoustic thickness shear-mode sensors," IEEE Sensor Journal, Vol. 5, No. 5, 1106-1111, 2005.
doi:10.1109/JSEN.2005.844330

2. Hou, X. W., G. L. Wang, G. Q. Su, X. Wang, and S. D. Nie, "Rapid identification of edible oil species using supervised support vector machine based on low-field nuclear magnetic resonance relaxation features," Food Chemistry, Vol. 280, 139-145, 2019.
doi:10.1016/j.foodchem.2018.12.031

3. Alberdi-Cedeno, J., M. L. Ibargoitia, and M. D. Guillen, "Monitoring of minor compounds in corn oil oxidation by direct immersion-solid phase microextraction-gas chromatography/mass spectrometry. New oil oxidation markers," Food Chemistry, Vol. 290, 286-294, 2019.
doi:10.1016/j.foodchem.2019.04.001

4. Larsson, W., J. Jalbert, R. Gilbert, and A. Cedergren, "Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation," Analytical Chemistry, Vol. 75, No. 6, 1227-1232, 2003.
doi:10.1021/ac026229+

5. Holland, T., A. M. Abdul-Munaim, D. G. Watson, and P. Sivakumar, "IP. Simportance of emulsification in calibrating infrared spectroscopes for analyzing water contamination in used or in-service engine oil," Lubricants, Vol. 6, No. 2, 35, 2018.
doi:10.3390/lubricants6020035

6. Niu, Q., S. S. Chen, L. Wang, Y. B. Hui, and Q. Wang, "Research of edible oil detection and variety distinguish based on voltammetric electronic tongue," IEEE International Conference on Information and Automation, Lijiang, China, August 2015.

7. Larsson, W., J. Jalbert, R. Gilbert, and A. Cedergren, "Efficiency of methods for Karl Fischer determination of water in oils based on oven evaporation and azeotropic distillation," Analytical Chemistry, Vol. 75, No. 6, 1227-1232, 2003.
doi:10.1021/ac026229+

8. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005.

9. Joshi, K. K. and R. D. Pollard, "Sensitivity analysis and experimental investigation of microstrip resonator technique for the in-process moisture/permittivity measurement of petrochemicals and emulsions of crude oil and water," Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, June 2006.

10. Agarwal, S. and Y. K. Prajapati, "Multifunctional metamaterial surface for absorbing and sensing applications," Optics Communications, Vol. 439, 304-307, 2019.
doi:10.1016/j.optcom.2019.01.020

11. Nigmatullin, R. R., A. A. Arbuzov, S. O. Nelson, and S. Trabelsi, "Dielectric relaxation in complex systems: Quality sensing and dielectric properties of honeydew melons from 10 MHz to 1.8 GHz," Journal of Instrumentation, Vol. 1, P10002, 2006.
doi:10.1088/1748-0221/1/10/P10002

12. Tiwari, N. K., S. P. Singh, and M. J. Akhtar, "Novel improved sensitivity planar microwave probe for adulteration detection in edible oils," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 164-166, 2019.
doi:10.1109/LMWC.2018.2886062

13. Gregory, A. P. and R. N. Clarke, "A review of RF and microwave techniques for dielectric measurements on polar liquids," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 4, 727-743, 2006.
doi:10.1109/TDEI.2006.1667730

14. Jamal, F. I., S. Guha, H. M. Eissa, S. Vehring, D. Kissinger, and C. Meliani, "K-band BiCMOS based near-field biomedical dielectric sensor for Detection of fat and calcium in blood," 2015 European Microwave Conference (EuMC), Paris, France, September 2015.

15. Di Meo, S., et al., "Correlation between dielectric properties and women age for breast cancer detection at 30 GHz," 2018 IEEE International Microwave Biomedical Conference (IMBioC), 190-192, Philadelphia, PA, USA, June 14–15, 2018.

16. Abdulkarim, Y. I., L. W. Deng, O. Altıntas, E. Unal, and M. Karaaslan, "Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113593, 2019.
doi:10.1016/j.physe.2019.113593

17. Liu, C. J. and Y. Pu, "A microstrip resonator with slotted ground plane for complex permittivity measurements of liquid," IEEE Microwave Wireless Components Letters, Vol. 18, No. 4, 257-259, 2008.
doi:10.1109/LMWC.2008.918894

18. Tiwari, N. K., S. Tiwari, and M. J. Akhtar, "Design of CSRR-based electronically tunable compact RF sensor for material testing," IEEE Sensors Journal, Vol. 18, No. 18, 7450-7457, 2018.
doi:10.1109/JSEN.2018.2861365

19. Altintas, O., M. Aksoy, E. Unal, O. Akgol, and M. Karaaslan, "Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant," Measurement, Vol. 145, 678-686, 2019.
doi:10.1016/j.measurement.2019.05.087

20. Altintas, O., M. Aksoy, E. Unal, and M. Karaaslan, "Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator," Journal of The Electrochemical Society, Vol. 166, No. 6, B482-B488, 2019.
doi:10.1149/2.1101906jes

21. Kumar, A. V. P., et al., "Dielectric characterization of common edible oils in the higher microwave frequencies using cavity perturbation," Journal of Microwave Power and Electromagnetic Energy, Vol. 53, No. 1, 48-56, 2019.
doi:10.1080/08327823.2019.1569899

22. Tumkaya, M. A., F. Dincer, M. Karaaslan, and C. Sabah, "Sensitive metamaterial sensor for distinction of authentic and inauthentic fuel samples," Journal of Electronic Materials, Vol. 46, No. 8, 4955-4962, 2017.
doi:10.1007/s11664-017-5485-x

23. Liu, C. J. and Y. Pu, "A microstrip resonator with slotted ground plane for complex permittivity measurements of liquid," IEEE Microwave Wireless Components Letters, Vol. 18, No. 4, 257-259, 2008.
doi:10.1109/LMWC.2008.918894

24. Abduljabar, A. A., D. J. Rowe, A. Porch, and D. A. Barrow, "Novel microwave microfluidic sensor using a microstrip split-ring resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 3, 679-688, 2014.
doi:10.1109/TMTT.2014.2300066

25. Wei, Z. H., et al., "A high-sensitivity microfluidic sensor based on square SIW re-entrant cavity for complex permittivity measurement of Liquids," Sensors, Vol. 18, No. 11, 4005, 2018.
doi:10.3390/s18114005

26. Ling, K., et al., "Microfluidic tunable inkjet-printed metamaterial absorber on paper," Optics Express, Vol. 23, No. 1, 110-120, 2015.
doi:10.1364/OE.23.000110

27. Pang, Y. Q., H. F. Cheng, Y. J. Zhou, and J. Wang, "Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach," Journal of Applied Physics, Vol. 113, No. 11, 114902, 2013.
doi:10.1063/1.4795277

28. Zhou, J. F., E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, 2006.
doi:10.1364/OL.31.003620

29. Gao, C., T. Wei, F. Duewer, Y. L. Lu, and X. D. Xiang, "High spatial resolution quantitative microwave impedance microscopy by a scanning tip microwave near-field microscope," Applied Physics Letters, Vol. 71, No. 13, 1872-1874, 1997.
doi:10.1063/1.120444

30. Salim, A. and S. J. Lim, "Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor," Sensors, Vol. 16, 1802, 2016.
doi:10.3390/s16111802

31. Yadav, R. and P. N. Patel, "Experimental study of adulteration detection in fish oil using novel PDMS cavity bonded EBG inspired patch sensor," IEEE Sensors Journal, Vol. 16, No. 11, 4354-4361, 2016.
doi:10.1109/JSEN.2016.2542287

32. Yoo, M. Y., H. K. Kim, and S. J. Lim, "Electromagnetic-based ethanol chemical sensor using metamaterial absorber," Sensors and Actuators B: Chemical, Vol. B222, 173-180, 2016.
doi:10.1016/j.snb.2015.08.074

33. Memon, M. U. and S. J. Lim, "Microfluidic high-Q circular Substrate-Integrated Waveguide (SIW) cavity for Radio Frequency (RF) chemical liquid sensing," Sensors, Vol. 18, 143, 2018.
doi:10.3390/s18010143