Vol. 98
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-20
Low-Cost Inkjet-Printed Multiband Frequency-Selective Structures Consisting of U-Shaped Resonators
By
Progress In Electromagnetics Research C, Vol. 98, 31-44, 2020
Abstract
We present design and computational simulation of multiband, polarization-independent, and thin frequency-selective structures for microwave frequencies, and their fabrication via a very low-cost inkjet-printing procedure. The structures are constructed by periodically arranging unit cells that consist of U-shaped resonators, while polarization-independency is achieved by applying rotational arrangements. Various configurations are obtained by considering double and single U-shaped resonators, as well as rotational and complementary relationships between the corresponding unit cells on the top and bottom surfaces. We observe that complementary arrangements provide resonances with better quality, particularly by allowing the smaller resonators to operate as desired. Measurements on the fabricated samples demonstrate the feasibility of both effective and very low-cost inkjet-printed frequency-selective structures with multiband and polarization-independent characteristics.
Citation
Özgür Eris, Hande Ibili, and Özgür Ergül, "Low-Cost Inkjet-Printed Multiband Frequency-Selective Structures Consisting of U-Shaped Resonators," Progress In Electromagnetics Research C, Vol. 98, 31-44, 2020.
doi:10.2528/PIERC19082604
References

1. Nikitin, P. V., S. Lam, and K. V. S. Rao, "Low cost silver ink RFID tag antennas," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 353-356, 2005.

2. Yang, L., A. Rida, R. Vyas, and M. M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2894-2901, Dec. 2007.
doi:10.1109/TMTT.2007.909886

3. Batchelor, J. C., E. A. Parker, J. A. Miller, V. Sanchez-Romaguera, and S. G. Yeates, "Inkjet printing of frequency selective surfaces," Electron. Lett., Vol. 45, No. 1, 7-8, Jan. 2009.
doi:10.1049/el:20092713

4. Rida, A., L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications," IEEE Antennas Propag. Mag., Vol. 51, No. 3, 13-23, Jun. 2009.
doi:10.1109/MAP.2009.5251188

5. Walther, M., A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, "Terahertz metamaterials fabricated by inkjet printing," Appl. Phys. Lett., Vol. 95, No. 251107, Dec. 2009.

6. Cooper, J. R., S. Kim, and M. M. Tentzeris, "A novel polarization-independent, free-space, microwave beam splitter utilizing an inkjet-printed, 2-D array frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 11, 686-688, Jun. 2012.
doi:10.1109/LAWP.2012.2204715

7. Maza, A. R., B. Cook, G. Jabbour, and A. Shamim, "Paper-based inkjet-printed ultra-wideband fractal antennas," IET Microwaves, Antennas & Propagation, Vol. 6, No. 12, 1366-1373, Sep. 2012.
doi:10.1049/iet-map.2012.0243

8. Subbaraman, H., D. T. Pham, X. Xu, M. Y. Chen, A. Hosseini, X. Lu, and R. T. Chen, "Inkjet-printed two-dimensional phased-array antenna on a flexible substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 170-173, Mar. 2013.
doi:10.1109/LAWP.2013.2245292

9. Yoo, M., H. K. Kim, S. Kim, and M. M. Tentzeris, "Silver nanoparticle-based inkjet-printed metamaterial absorber on flexible paper," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1718-1721, Apr. 2015.
doi:10.1109/LAWP.2015.2420712

10. Bin Ashraf, F., T. Alam, and M. T. Islam, "A printed xi-shaped left-handed metamaterial on low-cost flexible photo paper," Materials, Vol. 10, No. 752, Jul. 2017.

11. Zabri, S. N., R. Cahill, G. Conway, and A. Schuchinsky, "Inkjet printing of resistively loaded FSS for microwave absorbers," Electron. Lett., Vol. 51, No. 13, 999-1001, Jun. 2015.
doi:10.1049/el.2015.0696

12. Çiftçi, T., B. Karaosmanoglu, and Ö. Ergül, "Low-cost inkjet antennas for RFID applications," IOP Conf. Ser.: Mater. Sci. Eng., Vol. 120, No. 1, Apr. 2016.

13. Güler, S., B. Karaosmanoglu, and Ö. Ergül, "Design, simulation, and fabrication of a novel type of inkjet-printed pixel antenna," Progress In Electromagnetics Research Letters, Vol. 64, 51-55, 2016.
doi:10.2528/PIERL16081602

14. Mutlu, F., C. Önol, B. Karaosmanoglu, and Ö. Ergül, "Inkjet-printed cage-dipole antennas for radio-frequency applications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 2016-2020, Nov. 2017.
doi:10.1049/iet-map.2016.0486

15. Ibili, H. and Ö. Ergül, "Very low-cost inkjet-printed metamaterials: Progress and challenges," Proc. IEEE MTT-S Int. Microwave Workshop Series on Advanced Materials and Processes (IMWSAPM), 2017.

16. Ibili, H., B. Karaosmanoglu, and Ö. Ergül, "Demonstration of negative refractive index with low-cost inkjet-printed microwave metamaterials," Microw. Opt. Technol. Lett., Vol. 60, No. 1, 187-191, Jan. 2018.
doi:10.1002/mop.30942

17. Çetin, E., M. B. Sahin, and Ö. Ergül, "Array strategies for improving the performances of chipless RFID tags," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 2015-2016, 2018.

18. Demir, M. A., F. Mutlu, and Ö. Ergül, "Design of highly distinguishable letters for inkjet-printed chipless RFID tags," Proc. IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (IEEE APWC), 783-786, 2018.

19. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 081901, Aug. 2010.

20. Ekmekci, E., Topalli K., T. Akin, and G. Turhan-Saya, "A tunable multi-band metamaterial design using micro-split SRR structures," Opt. Exp., Vol. 17, No. 18, 16046-16058, Aug. 200.
doi:10.1364/OE.17.016046

21. Turkmen, O., E. Ekmekci, and G. Turhan-Sayan, "Nested U-ring resonators: A novel multi-band metamaterial design in microwave region," IET Microwaves, Antennas & Propagation, Vol. 6, No. 10, 1102-1108, Jul. 2012.
doi:10.1049/iet-map.2012.0037

22. Bakir, M., K. Delihacioglu, M. Karaaslan, F. Dincer, and C. Sabah, "U-shaped frequency selective surfaces for single- and dual-band applications together with absorber and sensor configurations," IET Microwaves, Antennas & Propagation, Vol. 10, No. 3, 293-300, Feb. 2016.
doi:10.1049/iet-map.2015.0341

23. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

24. Ergül, Ö and L. Gürel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems, Wiley-IEEE, 2014.
doi:10.1002/9781118844977

25. Önol, C., A. Üçüncü, and Ö. Ergül, "Efficient multilayer iterative solutions of electromagnetic problems using approximate forms of the multilevel fast multipole algorithm," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3253-3256, 2017.
doi:10.1109/LAWP.2017.2771523

26. Mutlu, F., Design, Simulation, and Fabrication of Low-Cost Inkjet Antennas, MS Thesis, Middle East Technical University, Aug. 2016.