Vol. 98
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-19
Direct Suspension Control Based on Second Order Sliding Mode for Bearingless Brushless DC Motor
By
Progress In Electromagnetics Research C, Vol. 98, 17-30, 2020
Abstract
For direct suspension force control (DSFC) strategy of Bearingless Brushless DC Motor (BBLDCM), combined with super-twisting algorithm, a second-order sliding mode (SOSM) controller is designed by direct suspension force. The control precision, robustness, and jitter suppression of the suspension subsystem are improved. The direct suspension force control based on the second-order sliding mode (SOSM-DSFC) controller solves the influence of external disturbance on the self-stabilizing suspension, effectively suppresses the rotor jitter problem, and improves the robustness of the rotor suspension.
Citation
Baohua Yue Ye Yuan Tianyue Tao , "Direct Suspension Control Based on Second Order Sliding Mode for Bearingless Brushless DC Motor," Progress In Electromagnetics Research C, Vol. 98, 17-30, 2020.
doi:10.2528/PIERC19091602
http://www.jpier.org/PIERC/pier.php?paper=19091602
References

1. Yuan, Y., Y. Sun, and Y. Huang, "Design and analysis of bearingless flywheel motor specially for flywheel energy storage," IET Electronics Letters, Vol. 52, No. 16, 66-68, Jan. 2016.
doi:10.1049/el.2015.1938

2. Ooshima, M. and C. Takeuchi, "Magnetic suspension performance of a bearingless brushless DC motor for small liquid pumps," IEEE Transactions on Industry Applications, Vol. 47, No. 1, 72-78, Jan.-Feb. 2011.
doi:10.1109/TIA.2010.2091233

3. Murashige, T. and W. Hijikata, "Mechanical antithrombogenic properties by vibrational excitation of the impeller in a magnetically levitated centrifugal blood pump," Artificial Organs, Vol. 43, No. 9, 849-859, Sep. 2019.
doi:10.1111/aor.13541

4. Jing, L., J. Cheng, and T. Ben, "Analytical method for magnetic field and electromagnetic performances in switched reluctance machines," Journal of Electrical Engineering & Technology, Vol. 14, No. 4, 1625-1635, Jul. 2019.

5. Severson, E. L., "Bearingless motor technology for industrial and transportation applications," IEEE Transportation and Electrification Conference and Expo, 266-273, Long Beach, CA, USA, 2018.

6. Zwyssig, C., T. Baumgartner, and J. W. Kolar, "High-speed magnetically levitated reaction wheel demonstrator," 2014 International Power Electronics Conference, IEEE, 2014.

7. Jing, L., J. Gong, Z. Huang, T. Ben, and Y. Huang, "A new structure for the magnetic gear," IEEE Access, Vol. 7, 75550-75555, 2019.
doi:10.1109/ACCESS.2019.2919679

8. Zhu, X., J. Huang, L. Quan, Z. Xiang, and B. Shi, "Comprehensive sensitivity analysis and multi-objective optimization research of permanent magnet flux-intensifying motors," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 2613-2627, Apr. 2019.
doi:10.1109/TIE.2018.2849961

9. Zhu, X., Z. Shu, L. Quan, Z. Xiang, and X. Pan, "Design and multi-condition comparison of two outer-rotor flux-switching permanent magnet motors for in-wheel traction applications," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6137-6148, 2017.
doi:10.1109/TIE.2017.2682025

10. Grabner, H., W. Amrhein, and S. Silber, "Nonlinear feedback control of a bearingless brushless DC motor," IEEE-ASME Transactions on Mechatronics, Vol. 15, No. 1, 40-47, Feb. 2010.
doi:10.1109/TMECH.2009.2014058

11. Yuan, Y., Y. Huang, and Y. Sun, "Mathematical modeling and control for a single winding bearingless flywheel motor in electric/suspension mode," Journal of Electrical Engineering & Technology, Vol. 13, No. 5, 1935-1944, Sep. 2018.

12. Zhu, H. and L. Shan, "A new control method of suspension force for bearingless brushless DC motor," Journal of Jiangsu University (Natural Science Edition), Vol. 36, No. 2, 209-214, Feb. 2015.

13. Henzel, M., K. Falkowski, and M. Zokowski, "The analysis of the control system for the bearingless induction electric motor," Journal of Vibroengineering, Vol. 14, No. 1, 16-21, Mar. 2012.

14. Deng, Z., H. Zhang, and X. Wang, "The nonlinear decoupling control of the bearingless induction motors based on the airgap flux orientation," Chinese Journal of Aeronautics, Vol. 15, No. 1, 38-42, Feb. 2002.
doi:10.1016/S1000-9361(11)60128-3

15. Nian, H., Y. He, and L. Huang, "Integrated self-sensing of rotor position and displacement for inset PM type bearingless motor," Proceedings of the CSEE, Vol. 27, No. 9, 52-58, Mar. 2007.

16. Qiu, Z., Z. Deng, and Y. Zhang, "Direct levitation force control of a consequent-pole permanent magnet bearingless motor," Transactions of China Electrotechnical Society, Vol. 26, No. 9, 94-99, Sep. 2011.

17. Liu, H., J. Wang, and J. Zhang, "Research on torque ripple suppression techniques for brushless DC motor," 2013 the 25th Chinese Control and Decision Conference (CCDC), 424-429, 2013.

18. Ammar, A., A. Bourek, and A. Benakcha, "Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control," ISA Transactions, Vol. 67, 428-442, Mar. 2017.
doi:10.1016/j.isatra.2017.01.010

19. Sun, Y., K. Zhang, and Y. Yuan, "A novel direct suspension force control for bearingless brushless DC motor," Electric Machines & Control Application, Vol. 45, No. 11, 1-6, 2018.

20. Masmoudi, M., B. El Badsi, and A. Masmoudi, "Direct torque control of brushless DC motor drives with improved reliability," IEEE Transactions on Industry Applications, Vol. 50, No. 6, 3744-3753, Nov.-Dec. 2014.
doi:10.1109/TIA.2014.2313700

21. Ozturk, S. B., W. C. Alexander, and H. A. Toliyat, "Direct torque control of four-switch brushless DC motor with non-sinusoidal back EMF," IEEE Transactions on Power Electronics, Vol. 25, No. 2, 263-271, Feb. 2010.
doi:10.1109/TPEL.2009.2028888