Vol. 99
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-17
Coherence Reduction of the Measurement Matrix in Microwave Computational Imaging by Introducing Polarization Diversity
By
Progress In Electromagnetics Research C, Vol. 99, 1-14, 2020
Abstract
For microwave computational imaging (MCI), the reduction of measurement matrix's coherences permits better reconstruction performance. Therefore, frequency diverse apertures (FDAs) have become a major option of antennas for MCI due to their frequency-varying radiation patterns. The frequency diversity in the patterns reduces coherences; however, the losses in practical materials and the finite sizes of apertures impose upper limits on frequency diversity. For further coherence reduction, the polarization diversity (PD) of aperture elements is as a new approach introduced in this paper. We present an electromagnetic formulation of scattering aperture elements' PD. In the formulation, the PD brings an additional degree of freedom in the generation of the measurement matrix, given the apertures being illuminated with varying polarizations. This new degree of freedom enables a potential of reducing the coherences. Two complementary electric-field-coupled (cELC) scattering apertures, which differentiate in the polarizations of elements, are fabricated for validation. A set of comparisons yielded by the near-field scanning data of these apertures shows that the PD effectively reduces coherences and improves reconstruction performance.
Citation
Jian Guan Chang Chen Weidong Chen , "Coherence Reduction of the Measurement Matrix in Microwave Computational Imaging by Introducing Polarization Diversity," Progress In Electromagnetics Research C, Vol. 99, 1-14, 2020.
doi:10.2528/PIERC19100707
http://www.jpier.org/PIERC/pier.php?paper=19100707
References

1. Mait, J. N., G. W. Euliss, and R. A. Athale, "Computational imaging," Advances in Optics and Photonics, Vol. 10, 409-483, 2018.
doi:10.1364/AOP.10.000409

2. Yurduseven, O., T. Fromenteze, K. Cooper, G. Chattopadhyay, and D. R. Smith, "From microwaves to submillimeter waves: Modern advances in computational imaging, radar, and future trends," Proceedings of Society of Photographic Instrumentation Engineers, Vol. 10917, San Francisco, United States, Feb. 2-7, 2019.

3. Guan, J. and W. Chen, "On the coherence relationship between measurement matrices and equivalent radiation sources in microwave computational imaging applications," Applied Sciences, Vol. 9, 1172, 2019.
doi:10.3390/app9061172

4. Huang, K. and X. Zhao, Inverse Problems in Electromagnetic Fields and Its Applications, 1st Ed., Science Press, Beijing, China, 2005 (in Chinese).

5. Gureyev, T. E., D. M. Paganin, A. Kozlov, Ya. I. Nesterets, and H. M. Quiney, "Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging," Physical Review A, Vol. 97, 053819, 2018.
doi:10.1103/PhysRevA.97.053819

6. Carin, L., D. Liu, and B. Guo, "Coherence, compressive sensing, and random sensor arrays," IEEE Antennas and Propagation Magazine, Vol. 53, 28-39, 2011.
doi:10.1109/MAP.2011.6097283

7. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, 310-313, 2013.
doi:10.1126/science.1230054

8. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of Optical Society of America A, Vol. 30, 1603-1612, 2013.
doi:10.1364/JOSAA.30.001603

9. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, "Metamaterial microwave holographic imaging system," Journal of Optical Society of America A, Vol. 31, 2109-2119, 2014.
doi:10.1364/JOSAA.31.002109

10. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, "Computational imaging using a mode-mixing cavity at microwave frequencies," Applied Physics Letters, Vol. 106, 194104, 2015.
doi:10.1063/1.4921081

11. Imani, M. F., T. Sleasman, J. N. Gollub, and D. R. Smith, "Analytical modeling of printed metasurface cavities for computational imaging," Journal of Applied Physics, Vol. 120, 144903, 2016.
doi:10.1063/1.4964336

12. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," Journal of Optical Society of America A, Vol. 33, 899-912, 2016.
doi:10.1364/JOSAA.33.000899

13. Sleasman, T., M. F. Imani, J. N. Gollub, and D. R. Smith, "Dynamic metamaterial aperture for microwave imaging," Applied Physics Letters, Vol. 107, 204104, 2015.
doi:10.1063/1.4935941

14. Wu, Z., L. Zhang, H. Liu, and N. Kou, "Enhancing microwave metamaterial aperture radar imaging performance with rotation synthesis," IEEE Sensors Journal, Vol. 16, 8035-8043, 2016.
doi:10.1109/JSEN.2016.2609200

15. Yoya, A. C. T., B. Fuchs, C. Leconte, and M. Davy, "A reconfigurable chaotic cavity with fluorescent lamps for microwave computational imaging," Progress In Electromagnetics Research, Vol. 165, 1-12, 2019.
doi:10.2528/PIER19011602

16. Zhu, S., X. Dong, Y. He, M. Zhao, G. Dong, X. Chen, and d A. Zhang, "Frequency-polarization-diverse aperture for coincidence imaging," IEEE Microwave and Wireless Components Letters, Vol. 28, 82-84, 2018.
doi:10.1109/LMWC.2017.2769448

17. Poon, A. and D. Tse, "Polarization degrees of freedom," Proceedings of 2008 IEEE International Symposium on Information Theory, 1587-1591, Toronto, Canada, Jul. 6-11, 2008.

18. Chew, W.-C., Waves and Fields in Inhomogeneous Media, 1st Ed., IEEE Press, New York, United States, 1995.

19. Van Den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

20. Sleasman, T., M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, "Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies," Journal of Optical Society of America B, Vol. 33, 1098-1111, 2016.
doi:10.1364/JOSAB.33.001098

21. Hori, M., "Inverse analysis method using spectral decomposition of Green’s function," Geophysical Journal International, Vol. 147, 77-87, 2001.

22. Kastner, R., "On the singularity of the full spectral Green’s dyad," IEEE Transactions on Antennas and Propagation, Vol. 35, 1303-1305, 1987.
doi:10.1109/TAP.1987.1144016

23. Pellat-Finet, P., "Fresnel diffraction and the fractional-order Fourier transform," Optics Letters, Vol. 19, 1388-1390, 1994.
doi:10.1364/OL.19.001388

24. Alieva Vicente Lopez, T., F. Agullo-Lopez, and L. B. Almeida, "The fractional Fourier transform in optical propagation problems," Journal of Modern Optics, Vol. 41, 1037-1044, 1994.
doi:10.1080/09500349414550971

25. Ledger, P. D. and W. R. Bill Lionheart, "Understanding the magnetic polarizability tensor," IEEE Transactions on Magnetics, Vol. 52, 1-16, 2016.
doi:10.1109/TMAG.2015.2507169

26. Duarte-Carvajalino, J. M. and G. Sapiro, "Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization," IEEE Transactions on Image Processing, Vol. 18, 1395-1408, 2009.
doi:10.1109/TIP.2009.2022459

27. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319