Vol. 98

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-06

Stepped Slot Patch Antenna with Copper Ground Plane and Solar Cell Ground Plane for Future Mobile Communications

By Thandullu Naganathan Suresh Babu and Dhandapani Sivakumar
Progress In Electromagnetics Research C, Vol. 98, 187-198, 2020
doi:10.2528/PIERC19101603

Abstract

A new structure design of a multi-band suspended stepped slot microstrip patch antenna with copper ground plane for future mobile communications is proposed and presented. A parametric study for the effect on the proposed antenna is done on a par with the integration of a polycrystalline silicon solar cell. The compact low profile proposed antenna is developed using Printed Circuit Board (PCB) technology on a substrate, FR4 with physical size of 50×50 mm2. Simulated and measured results are presented to validate the usefulness of the proposed antenna structure for Wi-Max and future mobile communications. The measured result reveals that the presented stepped slot patch antenna with copper ground plane offers impedance bandwidth of 3.94% (covering 5.46 GHz-5.68 GHz band), 3.06% (covering 7.08 GHz-7.3 GHz band), and 9.26% (covering 8.34 GHz-9.15 GHz band). The same radiating patch with solar ground plane offers impedance bandwidth of 4.58% (covering 5.12 GHz-5.36 GHz band) and 3.06% (covering 7.32 GHz-8.02 GHz band) for future mobile communications. Good VSWR and radiation pattern characteristics are obtained in the frequency band of interest.

Citation


Thandullu Naganathan Suresh Babu and Dhandapani Sivakumar, "Stepped Slot Patch Antenna with Copper Ground Plane and Solar Cell Ground Plane for Future Mobile Communications," Progress In Electromagnetics Research C, Vol. 98, 187-198, 2020.
doi:10.2528/PIERC19101603
http://www.jpier.org/PIERC/pier.php?paper=19101603

References


    1. Yang, S.-L. S., A. A., Kishk, and K.-F. Lee, "Frequency reconfigurable U-slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 127-129, 2008.
    doi:10.1109/LAWP.2008.921330

    2. Bakariya, P. S., S. Dwari, M. Sarkar, and M. K. Mandal, "Proximity-coupled multiband microstrip antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 755-758, 2015.
    doi:10.1109/LAWP.2014.2379611

    3. Xu, K. D., Y. H. Zhang, R. Spiegel, Y. Fan, W. T. Joines, and Q. H. Liu, "Design of a stub-loaded ring-resonator slot for antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 517-524, 2015.
    doi:10.1109/TAP.2014.2382646

    4. Mok, W. C., S. H. Wong, K. M. Luk, and K. F. Lee, "Single-layer single-patch dual-band and triple-band patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4341-4344, 2013.
    doi:10.1109/TAP.2013.2260516

    5. Khan, Q. U., D. Fazal, and M. bin Ihsan, "Use of slots to improve performance of patch in terms of gain and side lobes reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 422-425, 2015.
    doi:10.1109/LAWP.2014.2365588

    6. Bhupendra, K., N. K. Shukla, and K. B. Rajendra, "Wide slot antenna with Y shape tuning element for wireless applications," Progress in Electromagnetics Research M, Vol. 59, 45-54, 2017.

    7. Lu, H., Y. Liu, F. Liu, and W. Wang, "Single-feed single-patch triple-band single-beam/dual-beam U-slotted patch antenna," Progress In Electromagnetics Research M, Vol. 77, 17-28, 2019.
    doi:10.2528/PIERM18090102

    8. Das, S., P. P. Sarkar, and S. K. Chowdhury, "Modified π-shaped slot loaded multifrequency microstrip antenna," Progress In Electromagnetics Research B, Vol. 64, 103-117, 2015.
    doi:10.2528/PIERB15090905

    9. Xue, W., M. Xiao, G. Sun, and F. Xu, "A compact low-profile and quad-band antenna with three different shaped slots," Progress In Electromagnetics Research C, Vol. 70, 43-51, 2016.
    doi:10.2528/PIERC16102704

    10. Song, X. Y., T. L. Zhang, and Z. H. Yan, "Broadband and low-profile slot antenna with AMC surface for X/Ku applications," Progress In Electromagnetics Research M, Vol. 71, 189-197, 2018.

    11. Goswami, P. K. and G. Goswami, "Trident shape ultra-large band fractal slot EBG antenna for multipurpose IoT applications," Progress In Electromagnetics Research C, Vol. 96, 73-85, 2019.
    doi:10.2528/PIERC19073002

    12. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Inc., 2001.

    13. Balanis, C., Antenna Theory Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., Publication, 2005.

    14. Vaccaro, S., J. R. Mosig, and P. de Maagt, "Making planar antennas out of solar cells," Electronics Letters, Vol. 38, No. 17, 945-947, 2002.
    doi:10.1049/el:20020675

    15. Henze, N., M. Weitz, P. Hnfmann, C. Bende, J. Kirchhof, and H. Friichting, "Investigation of planar antennas with photovoltaic solar cells for mobile communications," 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2004), 5-8, 2004.

    16. Turpin, T. W. and R. Baktur, "Meshed patch antennas integrated on solar cells," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 693-696, 2009.
    doi:10.1109/LAWP.2009.2025522

    17. Shynu, S. V., M. J. Roo Ons, P. McEvoy, M. J. Ammann, S. J. McCormack, and B. Norton, "Integration of microstrip patch antenna with polycrystalline silicon solar cell," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3969-3972, 2009.
    doi:10.1109/TAP.2009.2026438

    18. Shynu, S. V., M. J. Roo Ons, M. J. Ammann, and B. Norton, "Dual band a-Si:H solar-slot antenna for 2.4/5.2GHz WLAN applications," Radio Engineering, Vol. 18, No. 4, 354-358, 2009.

    19. Roo-Ons, M. J., S. V. Shynu, M. J. Ammann, S. J. McCormack, and B. Norton, "Transparent patch antenna on a-Si thin-film glass solar module," Electronics Letters, Vol. 47, No. 2, 85-86, 2011.
    doi:10.1049/el.2010.7397

    20. Yurduseven, O. and D. Smith, "Solar cell stacked dual-polarized patch antenna for 5.8 GHz band WiMAX network," Electronics Letters, Vol. 49, No. 24, 1514-1515, 2013.
    doi:10.1049/el.2013.2451

    21. Caso, R., A. D’Alessandro, A. Michel, and P. Nepa, "Integration of slot antennas in commercial photovoltaic panels for stand-alone communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 62-69, 2013.
    doi:10.1109/TAP.2012.2220111

    22. Yurduseven, O., D. Smith, N. Pearsall, and I. Forbes, "A solar cell stacked slot-loaded suspended microstrip patch antenna with multiband resonance characteristics for WLAN and Wi-MAX systems," Progress In Electromagnetics Research, Vol. 142, 321-332, 2013.
    doi:10.2528/PIER13081502

    23. Yekan, T. and R. Baktur, "An experimental study on the effect of commercial triple junction solar cells on patch antennas integrated on their cover glass," Progress In Electromagnetics Research C, Vol. 63, 131-142, 2016.
    doi:10.2528/PIERC16031106

    24. Elsdon, M., O. Yurduseven, and X. Dai, "Wideband metamaterial solar cell antenna for 5 GHz Wi-Fi communication," Progress In Electromagnetics Research C, Vol. 71, 123-131, 2017.
    doi:10.2528/PIERC16110302

    25. Al-Shalaby, N. A. and S. M. Gaber, "Parametric study on effect of solar-cell position on the performance of transparent DRA transmit array," AEU-International Journal of Electronics and Communications, AEUE 51545, 1-6, 2016.

    26. Nashad, F., S. Foti, D. Smith, M. Elsdon, and O. Yurduseven, "Ku-band suspended meshed patch antenna integrated with solar cells for remote area applications," Progress In Electromagnetics Research C, Vol. 83, 245-254, 2018.
    doi:10.2528/PIERC18020608