Vol. 99
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-24
Eight-Port MIMO Antenna System for 2.6 GHz LTE Cellular Communications
By
Progress In Electromagnetics Research C, Vol. 99, 49-59, 2020
Abstract
In this paper, an eight-port antenna array operating in the 2.6 GHz band (2550-2650 MHz) for a multi-input multi-output (MIMO) mobile terminal is presented. The design is composed of four pairs of compact dual-polarized slot antennas that are symmetrically placed at the corners of a mobile-phone mainboard. Each antenna pair consists of miniaturized petal-shaped slot resonators fed by two independent microstrip-feeding lines, thus facilitating radiation pattern and polarization diversity: when acting together, they facilitate multi-channel MIMO operation. The design offers good isolation, dual polarization and full radiation coverage in a smartphone sized package. A low-cost FR-4 dielectric (ε = 4.4, δ = 0.02, and h = 0.8 mm) with a dimension of 75×150 mm2 is used as the PCB substrate. The characteristics of the smartphone antenna are examined using both simulations and measurements.
Citation
Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Yasir I. A. Al-Yasir, Ahmed M. Abdulkhaleq, Raed A. Abd-Alhameed, and Peter S. Excell, "Eight-Port MIMO Antenna System for 2.6 GHz LTE Cellular Communications," Progress In Electromagnetics Research C, Vol. 99, 49-59, 2020.
doi:10.2528/PIERC19111704
References

1. Jensen, M. and J. Wallace, "A review of antennas and propagation for MIMO wireless communications," IEEE Trans. Antennas Propag., Vol. 52, 2810-2824, 2004.
doi:10.1109/TAP.2004.835272

2. Yang, H. H. and Y. Q. S. Quel, "Massive MIMO meets small cell," Springer Briefs in Electrical and Computer Engineering, 2017, DOI 10.1007/978-3-319-43715-6 2.

3. Li, M.-Y., et al. "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
doi:10.1109/ACCESS.2017.2781705

4. Park, J.-D., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 8120-8126, 2019.

5. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346

6. Jensen, M. and J. Wallace, "A review of antennas and propagation for MIMO wireless communications," IEEE Trans. Antennas Propag., Vol. 52, 2810-2824, 2004.
doi:10.1109/TAP.2004.835272

7. Thrane, J., et al. "Comparison of empirical and ray-tracing models for mobile Communication systems at 2.6GHz," 2019 IEEE 90th Vehicular Technology Conference, Honolulu, HI, USA, Sept. 22-25, 2019.

8. Li, M.-Y., et al. "Eight-port dual polarized MIMO antenna for 5G smartphone applications," IEEE Asia Pacific Conf. on Antennas and Propagation, 195-196, Kaohsiung, Taiwan, Jul. 26-29, 2016.

9. Nikolikj, V. and T. Janevski, "A comparative cost-capacity modeling of wireless heterogeneous networks, implemented within the 0.7 GHz, 2.6GHz, 5 GHz and 28 GHz bands," Proc. Int. Conf. Ultra-wideband, 489-494, Sept. 2014.

10. Elfergani, I. T. E., et al. Antenna Fundamentals for Legacy Mobile Applications and Beyond, 1-659, Springer Nature, Sept. 2017.

11. Parchin, N. O., et al. "Frequency reconfigurable antenna array with compact end-fire radiators for 4G/5G mobile handsets," IEEE 5G World Forum, Dresden, Germany, Sept. 30-Oct. 2, 2019.

12. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, Norwood, MA, USA, 2014.

13. Zhang, Z., Antenna Design for Mobile Devices, Wiley-IEEE Press, Hoboken, NJ, USA, 2011.
doi:10.1002/9780470824481

14. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quad-band Planar Inverted-F Antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403

15. Ojaroudi, Y., et al. "Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications," Microw. Opt. Technol. Lett., Vol. 57, 756-759, 2015.
doi:10.1002/mop.28946

16. Zhao, X., S. P. Yeo, and L. C. Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Trans. Antennas Propag., Vol. 66, 4485-4495, 2018.
doi:10.1109/TAP.2018.2851381

17. Li, M.-Y., et al. "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
doi:10.1109/ACCESS.2017.2781705

18. Parchin, N. O., et al. "Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications," EuCAP Conference, Krakow, Poland, Mar. 31-Apr. 5, 2019.

19. Abdullah, M., Y.-L. Ban, K. Kang, M.-Y. Li, and M. Amin, "Eight-element antenna array at 3.5 GHz for MIMO wireless application," Progress In Electromagnetics Research C, Vol. 78, 209-217, 2017.
doi:10.2528/PIERC17082308

20. CST Microwave Studio, ver. 2018, CST, Framingham, MA, USA, 2018.

21. Valizade, A., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, 816-822, 2012.

22. Parchin, N. O., et al. "8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets," The IET Conference on Antennas and Propagation (APC), Birmingham, UK, Nov. 11-12, 2019.

23. Chandel, R., A. K. Gautam, and K. Rambabu, "Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1677-1684, Apr. 2018.
doi:10.1109/TAP.2018.2803134

24. Ojaroudi, N., "Small microstrip-fed slot antenna with frequency band-stop function," 21th Telecommunications Forum, TELFOR 2013, Belgrade, Serbia, Nov. 27-28, 2013.

25. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, Mar. 10-12, 2014.

26. Sun, L., H. Feng, Y. Li, and Z. Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Trans. Antennas Propag., Vol. 66, 6364-6369, 2018.
doi:10.1109/TAP.2018.2864674

27. Larsson, E., "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., Vol. 52, 186-195, 2014.
doi:10.1109/MCOM.2014.6736761

28. Ojaroudi, N., et al. "Enhanced bandwidth of small square monopole antenna by using inverted Ushaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, No. 8, 685-690, Aug. 2012.

29. Ali, W. A. E. and A. A. Ibrahim, "A compact double-sided MIMO antenna with an improved isolation for UWB applications," AEU Int. J. Electron. Commun., Vol. 82, 7-13, 2017.
doi:10.1016/j.aeue.2017.07.031

30. Khan, R., et al. "User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas," IEEE Access, Vol. 6, 77695-77715, 2018.
doi:10.1109/ACCESS.2018.2883788