Vol. 99
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-02-04
Design of a Miniaturized Multilayer Tunable Super Wideband BPF
By
Progress In Electromagnetics Research C, Vol. 99, 145-156, 2020
Abstract
A miniaturized multilayer tunable super wideband (SWB) bandpass filter (BPF) is presented based on a microstrip structure. A pair of transmission line is coupled with the aid of three defected ground structures (DGS) at ground to improve the coupling and provide ultra wide band pass response. One of the transmission line is placed at the top plane of the upper layer, and the other transmission line is at bottom plane of the lower layer with defected microstrip structures (DMS) to improve the return loss. Bandwidth can be tuned by properly selecting the resonator size. Circuit model for the microstrip resonator and mathematical analysis are given and studied. Finally, the proposed vertical connection with slotline structures and a three pole UWB filter is designed, simulated, fabricated, and the results are well vindicated by an exemplary circuit centered at 6.5 GHz with the measured fractional bandwidth (FBW) of 135%. The filter exhibits a constant group delay of 0.3 ns in the pass band and the size of the resonator is 13.67 mm×17.58 mm×3.2 mm.
Citation
Aditi Sengupta Somdotta Roychoudhury Santanu Das , "Design of a Miniaturized Multilayer Tunable Super Wideband BPF," Progress In Electromagnetics Research C, Vol. 99, 145-156, 2020.
doi:10.2528/PIERC19112805
http://www.jpier.org/PIERC/pier.php?paper=19112805
References

1. Clavet, Y., E. Rius, C. Quendo, J. F. Favennec, C. Person, C. Laporte, C. Zanchi, P. Moroni, J. C. Cayrou, and J. L. Cazaux, "C-band multilayer bandpass filter using open-loop resonators with floating metallic patches," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 9, 646-648, September 2007.
doi:10.1109/LMWC.2007.903438

2. Chang, W. S. and C. Y. Chang, "Analytical design of microstrip short circuit terminated stepped-impedance resonator dual-band filter," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 7, 1730-1739, July 2011.
doi:10.1109/TMTT.2011.2132140

3. García, R. G. and L. Yang, "Selectivity-enhancement technique for stepped-impedance-resonator dual-passband filters," IEEE Microw. Wirel. Compon. Lett., Vol. 29, No. 7, 453-455, July 2019.
doi:10.1109/LMWC.2019.2916458

4. Chen, C. F., "Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators," IEEE Microw. Wirel. Compon. Lett., Vol. 22, No. 7, 357-359, July 2012.
doi:10.1109/LMWC.2012.2202894

5. Gao, L., X. Y. Zhang, and Q. Xue, "Compact tri-band bandpass filter using novel eight-mode resonator for 5G wifi application," IEEE Microw. Wirel. Compon. Lett., Vol. 25, No. 10, 660-662, October 2015.
doi:10.1109/LMWC.2015.2421298

6. Schwab, W., F. Boegelsack, and W. Menzel, "Multilayer suspended stripline and coplanar line filters," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 7, 1403-1407, July 1994.
doi:10.1109/22.299736

7. Hong, J. S. and M. J. Lancaster, "Aperture-coupled microstrip open-loop resonators and their applications to the design of Novel microstrip bandpass filter," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 9, 1848-1855, September 1999.
doi:10.1109/22.788522

8. Djiaz, A. and T. A. Denidni, "A reduced-size two layer bandpass filter," Microwave and Optical Technology Letters, Vol. 44, No. 6, 512-515, February 2005.
doi:10.1002/mop.20683

9. Nedil, M., T. Denidni, A. Djaiz, and H. Boutayeb, "Ultra-wideband bandpass filters using multilayer slot coupled transitions," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 501-516, Taylor & Francis, 2008.
doi:10.1163/156939308784150353

10. Packiaraj, D., K. J. Vinoy, and A. T. Kalghatgi, "Analysis and design of a compact multi-layer ultra wide band filter," Progress In Electromagnetics Research C, Vol. 7, 111-123, 2009.
doi:10.2528/PIERC09030606

11. Hao, Z. C., J. S. Hong, J. P. Parry, and D. P. Hand, "Ultra-wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3080-3088, December 2009.
doi:10.1109/TMTT.2009.2034230

12. Chen, J. X., C. Shao, J. Shi, and Z. H. Bao, "Multilayer independently controllable dual band Bandpass filter using dual-mode slotted-patch resonator," Electronics Letters, Vol. 49, No. 9, 605-607, April 2013.
doi:10.1049/el.2013.0238

13. Boutejdar, A., M. Challal, A. A. Wael, A. Ibrahim, and P. Burte, "Compact LPF to UWB BPF transition employing quasi-triangular DGS resonators and a discontinuity on the microstrip feed line," IEEE 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, December 13-15, 2015, DOI: 10.1109/INTEE.2015.7416726.

14. Guo, Z. and T. Yang, "Novel compact ultra-wideband bandpass filter based on vialess vertical CPW/microstrip transitions," Electronics Letters, Vol. 53, No. 18, 1258-1260, August 2017.
doi:10.1049/el.2017.2060

15. Yang, L., L. Zhu, W. W. Choi, and K. W Tam, "Analysis and design of wideband microstrip-to-microstrip equal ripple vertical transitions and their application to bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 8, 2866-2877, August 2017.
doi:10.1109/TMTT.2017.2675418

16. Chen, J. X., Y. L. Li, W. Qin, Y. J. Yang, and Z. H. Bao, "Compact multilayer bandpass filter with wide stopband using selective feeding scheme," IEEE Trans. Circuits Syst. II, Vol. 65, No. 8, 1009-1013, August 2018.
doi:10.1109/TCSII.2017.2782692

17. Aliqab, K. and J. S. Hong, "UWB balanced BPF using a low-cost LCP bonded multilayer PCB technology," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 3, 1023-1029, March 2019.
doi:10.1109/TMTT.2019.2892774