Vol. 103

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-06-17

Compact Tri-Band Patch Antenna for Ku Band Applications

By Rajeev Kumar, Gurpreet Singh Saini, and Daljeet Singh
Progress In Electromagnetics Research C, Vol. 103, 45-58, 2020
doi:10.2528/PIERC20013101

Abstract

A compact tri-band antenna is designed and analyzed to achieve both transmission and reception of direct broadcast service (DBS) and fixed satellite service (FSS) in Ku band. The proposed antenna design consists of a truncated E-shaped slot, eight rectangular slots, two C-shaped slots in the patch and eight defected ground structure (DGS) slots. The three frequency bands of 11.40-12.91 GHz, 13.86-14.53 GHz, and 17.20-17.86 GHz are achieved with impedance bandwidths of 12.32%, 4.73%, and 3.77% respectively. Conversely, the measured frequency bands of 11.40-12.98 GHz, 14.21-14.86 GHz, and 17.41-18.98 GHz with the impedance bandwidth of 12.70%, 4.48%, and 8.63% respectively are obtained. The simulated results of the proposed antenna are compared with the results of fabricated antenna and are found to be satisfactory for reflection coefficient, impedance bandwidth, polarization, efficiency, gain, and radiation pattern. Moreover, the proposed antenna design can be used as an element in an array configuration to achieve high gain in both transmission and reception modes of FSS and DBS.

Citation


Rajeev Kumar, Gurpreet Singh Saini, and Daljeet Singh, "Compact Tri-Band Patch Antenna for Ku Band Applications," Progress In Electromagnetics Research C, Vol. 103, 45-58, 2020.
doi:10.2528/PIERC20013101
http://www.jpier.org/PIERC/pier.php?paper=20013101

References


    1. Wong, K. L., Compact and Broadband Microstrip Antennas, Vol. 168, John Wiley & Sons, 2004.

    2. Kumar, G. and K. Ray, Broadband Microstrip Antennas, Artech House, 2002.

    3. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, 28, IET, 1989.

    4. Vijayvergiya, P. L. and R. K. Panigrahi, "Single-layer single-patch dual band antenna for satellite applications," IET Microwaves, Antennas and Propagation, Vol. 11, No. 5, 664-669, 2016.
    doi:10.1049/iet-map.2016.0393

    5. Kouhalvandi, L., S. Paker, and H. B. Yagci, "Ku-band slotted rectangular patch array antenna design," 2015 23th IEEE Signal Processing and Communications Applications Conf. (SIU), 447-450, 2015.
    doi:10.1109/SIU.2015.7129855

    6. Parikh, H., S. V. Pandey, and M. Sahoo, "Design of a modified E-shaped dual band patchantenna for Ku band application," Proceedings International Conference on Communication Systems and Network Technologies, CSNT, 49-52, Rajkot, India, 2012.

    7. Saini, G. S. and R. Kumar, "A low profile patch antenna for Ku-band applications," International Journal of Electronics Letters, 1-11, 2019.
    doi:10.1080/21681724.2019.1661018

    8. Dubey, S. K., S. K. Pathak, and K. K. Modh, "High gain multiple resonance Ku band microstrip patch antenna," IEEE Applied Electromagnetics Conf. (AEMC), 1-3, 2011.

    9. Prasad, P. C. and N. Chattoraj, "Design of compact ku band microstrip antenna for satellite communication ," 2013 Int. Conf. Communications and Signal Processing (ICCSP), 196-200, 2013.
    doi:10.1109/iccsp.2013.6577042

    10. Sayed, A., R. S. Ghonam, and A. Zekry, "Design of a compact dual band microstrip antenna for Ku-band applications," International Journal of Computer Applications, Vol. 115, No. 13, 11-14, 2015.
    doi:10.5120/20210-2473

    11. Mao, Y., S. Guo, and M. Chen, "Compact dual-band monopole antenna with defected ground plane for Internet of things," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1332-1338, 2018.
    doi:10.1049/iet-map.2017.0860

    12. Nguyen Thi, T., K. C. Hwang, and H. B. Kim, "Dual-band circularly-polarised Spidron fractal microstrip patch antenna for Ku-band satellite communication applications," Electronics Letters, Vol. 49, No. 7, 444-445, 2013.
    doi:10.1049/el.2012.2973

    13. Khare, A. and R. Nema, "Triple band parasitic array antenna for C-X-Ku-band application using out-of-phase coupling approach," International Journal of Antennas and Propagation, 2014.

    14. Mathew, S., R. Anitha, U. Deepak, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A compact tri-band dual-polarized corner-truncated sectoral patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5842-5845, 2015.
    doi:10.1109/TAP.2015.2479216

    15. Samsuzzaman, M., M. T. Islam, N. Misran, and M. M. Ali, "Dual band X shape microstrip patch antenna for satellite applications," Procedia Technology, Vol. 11, 1223-1228, 2013.
    doi:10.1016/j.protcy.2013.12.317

    16. Naghar, A., O. Aghzout, M. Essaaidi, A. Alejos, M. Sanchez, and F. Falcone, "Ultra wideband and tri-band antennas for satellite applications at C-, X-, and Ku bands," Proceedings of 2014 Mediterranean Microwave Symposium (MMS2014), 1-5, IEEE, December 2014.

    17. Dhakad, S. K. and T. Bhandari, "A hexagonal broadband compact microstrip monopole antenna for C band, X band and Ku band applications," 2017 International Conference on Computing, Communication and Automation (ICCCA), 1532-1536, IEEE, May 2017.
    doi:10.1109/CCAA.2017.8230045

    18. Baudha, S. and V. Dinesh Kumar, "Corner truncated broadband patch antenna with circular slots," Microwave and Optical Technology Letters, Vol. 57, No. 4, 845-849, 2015.
    doi:10.1002/mop.28968

    19. Gupta, A., H. D. Joshi, and R. Khanna, "An X-shaped fractal antenna with DGS for multiband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 5, 1075-1083, 2017.
    doi:10.1017/S1759078716000994

    20. Nguyen Thi, T., K. C. Hwang, and H. B. Kim, "Dual-band circularly-polarised Spidron fractal microstrip patch antenna for Ku-band satellite communication applications," Electronics Letters, Vol. 49, No. 7, 444-445, 2013.
    doi:10.1049/el.2012.2973

    21. Lai, H. W., D. Xue, H. Wong, K. K. So, and X. Y. Zhang, "Broadband circularly polarized patch antenna arrays with multiple-layers structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 525-528, 2016.

    22. Deng, R., S. Xu, F. Yang, and M. Li, "A single-layer high-efficiency wideband reflectarray using hybrid design approach," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 884-887, 2016.

    23. Huang, J., W. Lin, F. Qiu, C. Jiang, D. Lei, and Y. Jay Guo, "A low profile, ultra-lightweight, high efficient circularly-polarized antenna array for Ku band satellite applications," IEEE Access, Vol. 5, 18356-18365, 2017.
    doi:10.1109/ACCESS.2017.2750318

    24. Darimireddy, N. K., R. R. Reddy, and A. M. Prasad, "A miniaturized hexagonal-triangular fractal antenna for wide-band applications [Antenna Applications Corner]," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 104-110, 2018.
    doi:10.1109/MAP.2018.2796441

    25. Jang, H. K., J. H. Shin, and C. G. Kim, "Low RCS patch array antenna with electromagnetic bandgap using a conducting polymer," IEEE International Conference in Electromagnetics Advance Applications, 140143, Sydney, Australia, 2010.

    26. Dhawan Singhand Viranjay, M. Srivastava, "Comparative analyses for RCS of patch antenna using shorted stubs metamaterial absorber," Journal of Engineering Science and Technology (JESTEC), Vol. 13, No. 11, 3532-3546, November 2018.

    27. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley and Sons Inc, New York, 2005.