Vol. 102
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-21
Applications of the Random Coupling Model to Assess Induced Currents OR Voltages in Reverberant Environment
By
Progress In Electromagnetics Research C, Vol. 102, 109-125, 2020
Abstract
Coupling in electronic devices may be a threat for the security of the information they process. Indeed, a current flowing into a conductor may radiate an electromagnetic field that will couple onto other conductors creating parasitic signals. If this current conveys sensitive information, its confidentiality may not be guaranteed. Moreover, depending on the amplitude of these parasitic signals, dysfunction may occur. It is thus valuable to assess the coupling effects in order to evaluate the probability that a current or a voltage reaches a given magnitude. This relevant quantity may be an input for a risk analysis process. In this study, we will focus on the study of couplings in reverberant cavities, and especially into the chassis of desktop computers. We will highlight that the Random Coupling Model (RCM) may be applied to determine statistical quantities related to induced currents or voltages between several ports placed inside a reverberant environment. Comparisons with experimental data, for several system configurations, show that the application of this model is relevant and allows to rapidly obtain the percentiles of the induced currents. At first, the coupling between two monopoles is studied, and then the coupling between printed circuit boards that are stacked together is investigated. Finally, the effect of adding broadband absorbers in casings is assessed.
Citation
Valentin Houchouas, Muriel Darces, Marc Hélier, Emmanuel Cottais, and José Lopes Esteves, "Applications of the Random Coupling Model to Assess Induced Currents OR Voltages in Reverberant Environment," Progress In Electromagnetics Research C, Vol. 102, 109-125, 2020.
doi:10.2528/PIERC20022707
References

1. Backstrom, M. G. and K. G. Lovstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 3, 396-403, 2004.

2. Berry, M. V., "Regular and irregular semiclassical wavefunctions," Journal of Physics A: Mathematical and General, Vol. 10, No. 12, 2083, 1977.

3. Camurati, G., S. Poeplau, M. Muench, T. Hayes, and A. Francillon, "Screaming channels: When electromagnetic side channels meet radio transceivers," Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS’18, 163-177, New York, NY, USA, 2018 (Association for Computing Machinery).

4. Cottais, E., J. L. Esteves, and C. Kasmi, "Second order soft-tempest in rf front-ends: Design and detection of polyglot modulations," 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 166-171, Aug. 2018.

5. Dyson, F. J., "A brownian-motion model for the eigenvalues of a random matrix," Journal of Mathematical Physics, Vol. 3, No. 6, 1191-1198, Nov. 1962.

6. Eaton, J. W., D. Bateman, S. Hauberg, and R. Wehbring, "GNU Octave version 4.2.1 manual: A high-level interactive language for numerical computations,", 2017.

7. Wigner, E. P., "Random matrices in physics," SIAM Review, Vol. 9, No. 1, 1-23, 1967.

8. Flintoft, I. D., S. L. Parker, S. J. Bale, A. C.Marvin, J. F. Dawson, and M. P. Robinson, "Measured average absorption cross-sections of printed circuit boards from 2 to 20 GHz," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 553-560, 2016.

9. Gil Gil, J., Z. B. Drikas, T. D. Andreadis, and S. M. Anlage, "Prediction of induced voltages on ports in complex, three-dimensional enclosures with apertures, using the random coupling model," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1535-1540, Oct. 2016.

10. Gradoni, G., T. M. Antonsen, S. M. Anlage, and E. Ott, "A statistical model for the excitation of cavities through apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 5, 1049-1061, Oct. 2015.

11. Gradoni, G., T. M. Antonsen, S. Anlage, and E. Ott, "Theoretical analysis of apertures radiating inside wave chaotic cavities," 2012 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 1-6, IEEE, 2012.

12. Gradoni, G., J.-H. Yeh, B. Xiao, T. M. Antonsen, S. M. Anlage, and E. Ott, "Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress," Wave Motion, Vol. 51, No. 4, 606-621, 2014.

13. Guri, M., A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and Y. Elovici, "Gsmem: Data exfiltration from air-gapped computers over GSM frequencies," 24th USENIX Security Symposium (USENIX Security 15), 849-864, Washington, D.C., Aug. 2015 (USENIX Association).

14. Hart, J. A., T. M. Antonsen, Jr., and E. Ott, "Effect of short ray trajectories on the scattering statistics of wave chaotic systems," Physical review E, Vol. 80, No. 4, 041109, 2009.

15. Hayashi, Y., N. Homma, M. Miura, T. Aoki, and H. Sone, "A threat for tablet pcs in public space: Remote visualization of screen images using em emanation," Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS’14, 954-965, New York, NY, USA, 2014.

16. Hemmady, S., T. M. Antonsen, E. Ott, and S. M. Anlage, "Statistical prediction and measurement of induced voltages on components within complicated enclosures: A wave-chaotic approach,", Vol. 54, No. 4, 758-771, 2012.

17. Hemmady, S., X. Zheng, T. M. Antonsen, Jr., E. Ott, and S. M. Anlage, "Universal statistics of the scattering coefficient of chaotic microwave cavities," Physical Review E, Vol. 71, No. 5, 056215, 2005.

18., http://anlage.umd.edu/RCM/.

19. Hemmady, S. D., "A wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures,", Ph.D. Thesis, University of Maryland, 2006.

20. Houchouas, V., M. Darces, N. Bourey, E. Cottais, Y. Chatelon, and M. Helier, "Comparison between simulation and measurement of EMI inside a computer chassis mock-up," 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE), 551-555, Aug. 2018.

21. Kasmi, C., J. Lopes-Esteves, N. Picard, M. Renard, B. Beillard, E. Martinod, J. Andrieu, and M. Lalande, "Event logs generated by an operating system running on a cots computer during iemi exposure," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1723-1726, Dec. 2014.

22. Kuhn, M. G., "Compromising emanations of LCD TV sets," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 3, 564-570, Jun. 2013.

23. Kune, D. F., J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu, Y. Kim, and W. Xu, "Ghost talk: Mitigating EMI signal injection attacks against analog sensors," 2013 IEEE Symposium on Security and Privacy, 145-159, May 2013.

24. Mehta, M. L., Random Matrices, 3rd Ed., Vol. 142, Elsevier, 2004.

25. Parker, S. L., I. D. Flintoft, A. C. Marvin, J. F. Dawson, S. J. Bale, M. P. Robinson, M. Ye, C.Wan, and M. Zhang, "Changes in a printed circuit board’s absorption cross section due to proximity to walls in a reverberant environment," 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC), 818-823, 2016.

26. Parker, S. L., I. D. Flintoft, A. C. Marvin, J. F. Dawson, S. J. Bale, M. P. Robinson, M. Ye, C.Wan, and M. Zhang, "Predicting shielding effectiveness of populated enclosures using absorption cross section of PCBs," 2016 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 324-328, 2016.

27. Parker, S. L., I. D. Flintoft, A. C. Marvin, J. F. Dawson, S. J. Bale, M. P. Robinson, M. Ye, C. Wan, and M. Zhang, "Absorption cross section measurement of stacked PCBs in a reverberation chamber," 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Vol. 1, 991-993, 2016.

28. Van Eck, W., "Electromagnetic radiation from video display units: An eavesdropping risk?," Computers & Security, Vol. 4, No. 4, 269-286, 1985.

29. Vuagnoux, M. and S. Pasini, "Compromising electromagnetic emanations of wired and wireless keyboards," USENIX Security Symposium, 1-16, 2009.

30. Wand, M. P. and M. C. Jones, Kernel Smoothing, Chapman and Hall/CRC, 1994.

31. Yeh, J.-H., J. A. Hart, E. Bradshaw, T. M. Antonsen, E. Ott, and S. M. Anlage, "Experimental examination of the effect of short ray trajectories in two-port wave-chaotic scattering systems," Phys. Rev. E, Vol. 82, 041114, Oct. 2010.

32. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices in chaotic microwave cavities: Single channel case," Electromagnetics, Vol. 26, No. 1, 3-35, 2006.

33. Zheng, X., T. M. Antonsen, and E. Ott, "Statistics of impedance and scattering matrices of chaotic microwave cavities with multiple ports," Electromagnetics, Vol. 26, No. 1, 37-55, 2006.