Vol. 103

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-07-01

Meta-Heuristic Multi-Objective as an Affordable Method for Improving the Grating Lobe in a Wide Scan Phased Array Antenna

By Maryam Shadi and Zahra Atlasbaf
Progress In Electromagnetics Research C, Vol. 103, 155-166, 2020
doi:10.2528/PIERC20030604

Abstract

In electronic beam scanning, the number of phase shifters is an obvious challenge. So, there are several methods to reduce the number of phase shifters. The aim of this paper is to investigate the use of the meta-heuristic algorithm to lower the grating lobe level in the subarray antenna. Improve the result obtained by group subarray optimization techniques to determine topology and space between elements, and complex optimization of weight, simultaneously. Uniform subarray and random subarray are analyzed in Matlab to determine the coefficient of excitation by the evolutionary algorithm, as well as swarm and hybrid. The results of the simulation are shown; this method leads to radiation pattern without grating lobe in wide scanning angle. It indicates that there is a possibility of obtaining wide electronic scanning with minimum number of phase shifters and improving result.

Citation


Maryam Shadi and Zahra Atlasbaf, "Meta-Heuristic Multi-Objective as an Affordable Method for Improving the Grating Lobe in a Wide Scan Phased Array Antenna," Progress In Electromagnetics Research C, Vol. 103, 155-166, 2020.
doi:10.2528/PIERC20030604
http://www.jpier.org/PIERC/pier.php?paper=20030604

References


    1. Mailloux, R. J., Phased Array Antenna Handbook, Artech House, 2017.

    2. Avser, B., J. Pierro, and G. M. Rebeiz, "Random feeding networks for reducing the number of phase shifters in limited-scan arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4648-4658, 2016.
    doi:10.1109/TAP.2016.2600861

    3. Akbar, F. and A. Mortazawi, "Scalable phased array architectures with a reduced number of tunable phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 9, 3428-3434, 2017.
    doi:10.1109/TMTT.2017.2657509

    4. Yan, F., P. Yang, M. Gao, X. Cui, and F. Yang, "Grating lobe reduction in phased arrays with regular subarray architecture," 2017 IEEE Antennas Propag. Soc. Int. Symp. Proc., Vol. 2017-Janua, No. 3, 1597-1598, 2017.

    5. Barott, W. C. and P. G. Steffes, "Grating lobe reduction in aperiodic linear arrays of physically large antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 406-408, 2009.
    doi:10.1109/LAWP.2008.2005364

    6. Arora, R. K. and N. C. V. Krishnamacharyulu, "Synthesis of unequally spaced arrays using dynamic programming," IEEE Trans. Antennas Propag., Vol. 16, No. 5, 593-595, 1968.
    doi:10.1109/TAP.1968.1139250

    7. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2210-2217, 2003.
    doi:10.1109/TAP.2003.816361

    8. Sanchez-Gomez, J., D. H. Covarrubias, and M. A. Panduro, "A synthesis of unequally spaced antenna arrays using legendre functions," Progress In Electromagnetics Research M, Vol. 7, 57-69, January 2009.
    doi:10.2528/PIERM09032305

    9. Mahmoud, K. R., "Synthesis of unequally-spaced linear array using modified central force optimisation algorithm," IET Microwaves, Antennas Propag., Vol. 10, No. 10, 1011-1021, 2016.
    doi:10.1049/iet-map.2015.0801

    10. Haupt, R. L., "Reducing grating lobes due to subarray amplitude tapering," IEEE Antennas Propag. Soc. AP-S Int. Symp., No. 8, 119-122, 1985.

    11. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1207-1210, 2007.
    doi:10.1109/TAP.2007.893406

    12. Zhao, X., Q. Yang, and Y. Zhang, "Synthesis of minimally subarrayed linear arrays via compressed sensing method," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 3, 487-491, 2019.
    doi:10.1109/LAWP.2019.2894826

    13. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for angular-limited scan arrays," Progress In Electromagnetics Research C, Vol. 68, 129-139, 2016.
    doi:10.2528/PIERC16060602

    14. Bianchi, D., S. Genovesi, and A. Monorchio, "Randomly overlapped subarrays for reduced sidelobes in angle-limited scan arrays," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1969-1972, 2017.
    doi:10.1109/LAWP.2017.2690824

    15. Han, Y., C. Wan, W. Sheng, B. Tian, and H. Yang, "Array synthesis using weighted alternating projection and proximal splitting," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1006-1009, 2015.
    doi:10.1109/LAWP.2015.2389804

    16. Dai, D., M. Yao, H. Ma, W. Jin, and F. Zhang, "An effective approach for the synthesis of uniformly excited large linear sparse array," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 3, 377-380, 2018.
    doi:10.1109/LAWP.2018.2790907

    17. Lin, C., A. Qing, and Q. Feng, "Synthesis of unequally spaced antenna arrays by a new differential evolutionary algorithm," Int. J. Commun. Networks Inf. Secur., Vol. 1, No. 1, 20-25, 2009.

    18. Bonabeau, E., M. Dorigo, D. de R. D. F. Marco, G. Theraulaz, and G. Theraulaz, "Swarm Intelligence: From Natural to Artificial Systems," Oxford University Press, No. 1, 1999.

    19. Ur Rahman, S., Q. Cao, M. M. Ahmed, and H. Khalil, "Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO," J. Microwaves, Optoelectron. Electromagn. Appl., Vol. 16, No. 2, 577-591, 2017.
    doi:10.1590/2179-10742017v16i2913

    20. Mandal, D. and Y. N. Tapaswi, "Radiation pattern synthesis of linear antenna arrays by amplitude tapering using genetic algorithm," 2011 IEEE Appl. Electromagn. Conf. AEMC 2011, 2011.

    21. Holland, J. H., "Genetic algorithms," Sci. Am., Vol. 267, No. 1, 66-73, 1992.
    doi:10.1038/scientificamerican0792-66

    22. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of IEEE International Conference on Neural Networks IV, Vol. 1000, 33, 1995.

    23. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, 2004.
    doi:10.1109/TAP.2004.823969

    24. Smail, M. K. and H. R. E. H. Bouchekara, "Particle swarm optimization versus genetic algorithms for wiring network diagnosis,", Vol. 52, No. 3, 771-779, 2004.
    doi:10.1109/TAP.2004.825102

    25. Cui, C. Y., Y. C. Jiao, and L. Zhang, "Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2444-2448, 2017.
    doi:10.1109/LAWP.2017.2723568

    26. Mesloub, S. and A. Mansour, "Hybrid PSO and GA for global maximization," Int. J. Open Probl. Comput. Sci. Math. IJOPCM, Vol. 2, No. 4, 597-608, 2009.

    27. Ru, N. and Y. Jianhua, "A GA and particle swarm optimization based hybrid algorithm," 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1047-1050, 2008.