Vol. 103
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-06-21
Fields of an Ultra-Relativistic Beam of Charged Particles Between Parallel Plates. Exact Two-Dimensional Solutions by the Method of Images and Applications to the HL-LHC
By
Progress In Electromagnetics Research C, Vol. 103, 83-95, 2020
Abstract
Exact two-dimensional (2D) analytic expressions for electric and magnetic fields and their potentials created by a linear beam of relativistic charged particles between infinite perfectly conductive plates and ferromagnetic poles are derived. The solutions are obtained by summing an infinite sequence of fields from linear charge-images and current-images in complex space. Knowledge of the normal component of the electric field on the conductor surface makes it possible to calculate the induced electric charge surface density. In addition, we derive within an improved linear approximation new analytical expressions for fields near the beam in the case of an arbitrary beam offset from the median plane. The mathematical features of exact solutions and limitations for the applicability of linear approximations are specified. The primary goals of the future high-luminosity p-p and heavy-ion Large Hadron Collider programme after the Long Shutdown 2 are the search for yet unobserved effects of physics beyond the Standard Model, searches for rare or low-sensitivity processes in the Higgs sector, and probing in more detail the mechanism of electroweak symmetry breaking. This programme relies on the stable operation of the accelerator. However, as the beam luminosity increases, a number of destabilizing phenomena occur, in particular field emission, enhancing the electron cloud effect. For the case of a proton beam, we apply the exact 2D solution for estimating the intensity of electron field emission activated by the electric field of the beam in collimators of the future high-luminosity Large Hadron Collider. Calculation shows that the field emission intensity is very sensitive to a collimator surface roughness. In addition, with a relatively small and accidental beam displacement from the median path, about 20% of the collimator half-gap, the emission intensity increases by a factor of 107. This will partially neutralize the beam space charge, violating acceleration dynamics and enhancing instability effects.
Citation
Boris Levchenko, "Fields of an Ultra-Relativistic Beam of Charged Particles Between Parallel Plates. Exact Two-Dimensional Solutions by the Method of Images and Applications to the HL-LHC," Progress In Electromagnetics Research C, Vol. 103, 83-95, 2020.
doi:10.2528/PIERC20032903
References

1. Wiedemann, H., Particle Accelerator Physics, Springer, Berlin-Heidelberg, Germany, 2007.

2. Levchenko, B. B., "Modification of relativistic beam fields under the influence of external conducting and ferromagnetic flat boundaries," Prog. Theor. Exp. Phys., Vol. 2020, No. 1, 013G01-013G29, 2020.
doi:10.1093/ptep/ptz132

3. Thomson, W., "On electrical images," Report of the Seventeenth Meeting of the British Association for the Advancement of Science, Vol. 1, Part II, 6, London, 1848.

4. Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 1, Ch. 11, The Calendon Press, Oxford, 1873.

5. Laslett, L. J., "On intensity limitations imposed by transverse space-charge effects in circular particle accelerators," Proc. BNL Summer Study on Storage Rings, 324-363, BNL-7534, 1963.

6. Chao, A. W., Physics of Collective Beam Instabilities in High-energy Accelerators, John Wiley and Sons, New York, 1993.

7. Hofmann, A., "Tune shifts from selffields and images," Proceedings of the 5th General Accelerator Physics Course, Vol. 1, CERN-94-01, Jyväskylä, Finland, 1992.

8. Levchenko, B. B., "Electric and magnetic fields generated by a charged bunch between parallel conducting plates," Physics Research International, Vol. 2010, 201730-201735, 2010.

9. Brüning, O., P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, and P. Proudlock, LHC Design Report. The LHC Main Ring, Vol. 1, CERN, Geneva, 2004.

10. Apollinari, G., I. B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L. Tavian, High-luminosity Large Hadron Collider (HL-LHC), Vol. 4, CERN-2017-007-M, CERN, Geneva, 2017.

11. "Report reveals full reach of LHC programme," CERN Courier, Vol. 59, 9, 2019, https://cerncourier.com/a/report-reveals-full-reach-of-lhc-programme.

12. Smythe, W. R., Static and Dynamic Electricity, McGraw-Hill Book Company, New York, 1950.

13. Zotter, B., "The Q-shift of off-center particle beams in elliptic vacuum chambers," Nucl. Instrum. Meth., Vol. 129, 377-395, 1975.
doi:10.1016/0029-554X(75)90728-4

14. Cimino, R., I. R. Collins, M. A. Furman, M. Pivi, F. Ruggiero, G. Rumolo, and F. Zimmermann, "Can low energy electrons affect high energy physics accelerators?," Phys. Rev. Lett., Vol. 93, 014801, 2004.
doi:10.1103/PhysRevLett.93.014801

15. Fowler, R. H. and L. W. Nordheim, "Electron emission in intense electric fields," Proc. Roy. Soc. (London), Vol. A119, 173-181, 1928.

16. Nordheim, L.W., "The effect of the image force on the emission an reflexion of electrons by metals," Proc. Roy. Soc. (London), Vol. A121, 626-639, 1928.

17. Nordheim, L., "Die theorie der electronenemission der metalle," Physikalische Zeitschrift, Vol. 30, No. 7, 117-196, 1929.

18. Elinson, M. I. and G. F. Vasil’ev, Field Emission, Fizmatgiz, Moscow, 1958 [in Russian].

19. Fursey, G., Field Emission in Vacuum Microelectronics, Kluwer Academic Plenum Publishers, New York, 2005.

20. Sommerfeld, A., H. Bethe, and , Elektronentheorie der Metalle, Springer, Berlin, 1967.
doi:10.1007/978-3-642-95002-5

21. Murphy, E. L., R. H. Good, and Jr., "Thermionic emission, field emission and the transition region," Phys. Rev., Vol. 102, No. 6, 1464-1473, 1956.
doi:10.1103/PhysRev.102.1464

22. Christov, S. G., "Recent test and new applications of the unified theory of electron emission," Surf. Sci., Vol. 70, 32-51, 1978.
doi:10.1016/0039-6028(78)90399-0

23. Good, R. H., Jr. and E.W. M¨uller, "Field emission," Encyclopedia of Physics, Vol. XXI, S. Flügge (Ed.), 1956.

24. Shrednik, V. N., "The theory of field emission from metals," Cold Cathodes, M. I. Elinson (Ed.), Sovetskoe Radio, Moscow, 1974 [in Russian].

25. Gomer, R., Field Emission and Field Ionization, AIP, New York, 1993.

26. Modinos, A., Field, Thermionic, and Secondary Electron Emission Spectroscopy, Plenum Press, New York, 1983.

27. Eidelman, S., et al. "Review of particle physics," Phys. Lett., Vol. B592, No. 1-4, 1-5, 2004.
doi:10.1016/j.physletb.2004.06.001

28. Burgess, R. E., H. Kroemer, and J. M. Houston, "Corrected values of Fowler-Nordheim field emission function θ(y) and S(y)," Phys. Rev., Vol. 90, 515, 1953.
doi:10.1103/PhysRev.90.515