A new class of the wideband series-fed microstrip array antenna is presented for X-band applications. A novel configuration of the reflector-slot-strip-foam-inverted patch (RSSIP) is proposed to provide high efficiency and wide operating frequency band. To improve the front to back ratio (FBR) and enhance the gain, a reflector is used. The series-fed configuration is selected for the array to simultaneously provide a very high efficiency and reduce the side lobe level. To experimentally verify the performance, a prototype of the array antenna is fabricated, and measurement is performed. This array consists of 12 sub-linear arrays with series-fed microstrip excitation. Also, each of these subarrays consists of 16 RSSIP antennas. An excellent agreement exists between measurement and simulation. The measured gain and efficiency of the fabricated antenna are 28.5 dB and 67% at 10 GHz, respectively. The measured impedance matching bandwidth (S11<-10 dB) is 24% which confirms the wideband characteristic of the antenna. The series-fed configuration results in very low measured SLL of -24.5dB at H-plane. The proposed 16 x 12 array antenna is a proper candidate for applications in MIMO systems and synthetic aperture radars (SAR).
2. Kan, G., W. Lin, C. Liu, and D. Zou, "An array antenna based on coplanar parasitic patch structure," Microw. Opt. Technol. Lett., Vol. 60, 1016-1023, 2018.
doi:10.1002/mop.31104
3. Jalali, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Quasi-self-complementary planar broadband series-fed array antenna for C-band applications," Microw. Opt. Technol. Lett., Vol. 59, 95-98, 2017.
doi:10.1002/mop.30228
4. Wadkar, S., B. Hogade, R. Chopra, and G. Kumar, "Broadband and high gain stacked microstrip antenna array," Microw. Opt. Technol. Lett., Vol. 61, 1882-1888, 2019.
doi:10.1002/mop.31813
5. Rabbani, M. and H. Ghafouri-Shiraz, "High gain microstrip antenna array for 60 GHz band point to point WLAN/WPAN communications," Microw. Opt. Technol. Lett., Vol. 59, 511-514, 2017.
doi:10.1002/mop.30332
6. Chopra, R. and G. Kumar, "Series-fed binomial microstrip arrays for extremely low sidelobe level," IEEE Trans. Antennas Propag., Vol. 67, 4275-4279, 2019.
doi:10.1109/TAP.2019.2908108
7. Yang, G., J. Li, D. Wei, and R. Xu, "Study on wide-angle scanning linear phased array antenna," IEEE Trans. Antennas Propag., Vol. 66, 450-455, 2018.
doi:10.1109/TAP.2017.2761999
8. Li, M. and K.-M. Luk, "Low-cost wideband microstrip antenna array for 60-GHz applications," IEEE Trans. Antennas Propag., Vol. 64, 3012-3018, 2014.
doi:10.1109/TAP.2014.2311994
9. Shen, X., Y. Liu, L. Zhao, G. Huang, X. Shi, and Q. Huang, "A miniaturized microstrip antenna array at 5G millimeter-wave band," IEEE Antennas Wireless Propag. Lett., Vol. 18, 1671-1675, 2019.
doi:10.1109/LAWP.2019.2927460
10. James, J. R., P. S. Hall, and C. Wood, Microstrip Antenna Theory and Design, Ch. 5, 6, PeregrinuS, London, UK, 1981.
doi:10.1049/PBEW012E
11. Mailloux, R. J., J. F. Mcilvenna, and N. P. Kernweis, "Microstrip array technology," IEEE Trans. Antennas Propag., Vol. 29, 25-37, 1981.
doi:10.1109/TAP.1981.1142525
12. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Low-sidelobe-level series-fed microstrip antenna array of unequal interelement spacing," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1695-1698, 2017.
doi:10.1109/LAWP.2017.2666427
13. Mohamed, I. and A. R. Sebak, "High-gain series-fed aperture-coupled microstrip antenna array," Microw. Opt. Technol. Lett., Vol. 57, 91-94, 2015.
doi:10.1002/mop.28792
14. Ku, C.-H., H.-W. Liu, and Y.-S. Lin, "Novel series-fed microstrip array antenna with miniaturized feeding network for WLAN/RFID applications," Microw. Opt. Technol. Lett., Vol. 53, 1727-1730, 2011.
doi:10.1002/mop.26120
15. Soliman, E. A., A. Vasylchenko, V. Volski, W. De Raedt, and G. A. E. Vandenbosch, "Sixteen-by-sixteen array of series-fed aperture-coupled microstrip patch antennas," Microw. Opt. Technol. Lett., Vol. 53, 2705-2711, 2011.
doi:10.1002/mop.26310
16. Yeo, J. and J.-I. Lee, "Broadband compact series-fed dipole pair antenna with simplified integrated balun," Microw. Opt. Technol. Lett., Vol. 56, 1731-1734, 2014.
doi:10.1002/mop.28432
17. Jalali, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Quasi-self-complementary planar broadband series-fed array antenna for C-band applications," Microw. Opt. Technol. Lett., Vol. 59, 95-98, 2017.
doi:10.1002/mop.30228
18. Im, Y.-T., J.-H. Lee, Y.-W. Jeong, L. Sang-Ik, and S.-O. Park, "A polarization selective series-fed array antenna," Microw. Opt. Technol. Lett., Vol. 52, 1861-1864, 2010.
doi:10.1002/mop.25323
19. Karimkashi, S. and G. Zhang, "A dual-polarized series-fed microstrip antenna array with very high polarization purity for weather measurements," IEEE Trans. Antennas Propag., Vol. 61, 5315-5319, 2013.
doi:10.1109/TAP.2013.2273813
20. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Study on isolation and radiation behaviours of a 34×34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125–300 GHz," Optik, Vol. 206, 1-10, 2020.
doi:10.1016/j.ijleo.2019.163222
21. Alibakhshikenari, M., B. S. Virdee, N. Ojaroudi, P. Shukla, K. Quazzane, C. H. See, R. Abd- Alhameed, F. Falcone, and E. Limiti, "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microw. Antennas Propag., 1-8, 2019.
22. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with ±30◦ frequency beam-scanning capability at millimetre-waves," Electronics, Vol. 8, 1-15, 2019.
doi:10.3390/electronics8060642
23. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Alhameed, and L. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas," IEEE Access, Vol. 7, 51827-51840, 2019.
doi:10.1109/ACCESS.2019.2909950
24. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 7, 23606-23614, 2019.
doi:10.1109/ACCESS.2019.2899326
25. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, A. H. Ali, F. Falcone, and E. Limiti, "Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures," IET Microw. Antennas Propag., Vol. 11, 2241-2247, 2018.
doi:10.1049/iet-map.2018.5103
26. Alibakhshikenari, M., B. S. Virdee, and C. H. See, R. A. Abd-Alhameed, F. Falcone, E. Limiti, "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, 1067-1075, 2019.
doi:10.1029/2019RS006871
27. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. A. Abd-Alhameed, M. Khalili, F. Falcone, and E. Limiti, "Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, 1368-1381, 2018.
doi:10.1029/2018RS006533
28. Alibakhshikenari, M., C. H. See, B. S. Virdee, and R. A. Abd-Alhameed, "Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
doi:10.2528/PIERL18021908
29. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, 1-11, 2018.
doi:10.3390/electronics7090198
30. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Hoboken, NJ, 2016.
31. Civerolo, M. and D. Arakaki, "Aperture coupled patch antenna design methods," IEEE International Symposium on Antennas and Propagation (APSURSI), 876-879, Spokane, WA, 2011.
32. Zarreen, A. and S. C. Shrivastava, "An introduction of aperture coupled microstrip slot antenna," International Journal of Engineering Science and Technology, Vol. 2, 36-39, 2010.
33. Li, X., J. Li, J. Tang, X. Wu, and Z. Zhang, "High gain microstrip antenna design by using FSS superstrate layer," 4th International Conference on Computer Science and Network Technology (ICCSNT), 1186-1189, Harbin, 2015.
34. Kharade, A. R. and V. P. Patil, "Enhancement of gain of rectangular microstrip antenna using multilayer multidielectric structure," IOSR Journal of Electronics and Communication Engineering, Vol. 2, 35-40, 2012.
35. Wu, W., J. Yin, and N. Yuan, "Design of an efficient X-band waveguide-fed microstrip patch array," IEEE Trans. Antennas Propag., Vol. 55, 1933-1939, 2007.
doi:10.1109/TAP.2007.900171
36. Chopra, R. and G. Kumar, "Series-fed binomial microstrip arrays for extremely low sidelobe level," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4275-4279, 2019.
doi:10.1109/TAP.2019.2908108
37. Wu, J., Y. J. Cheng, and Y. Fan, "A wideband high-gain high-efficiency hybrid integrated plate array antenna for V-band inter-satellite links," IEEE Trans. Antennas Propag., Vol. 63, 1225-1233, 2015.
doi:10.1109/TAP.2014.2382664
38. Chopra, R. and G. Kumar, "Series- and corner-fed planar microstrip antenna arrays," IEEE Trans. Antennas Propag., Vol. 67, 5982-5990, 2019.
doi:10.1109/TAP.2019.2922774