Vol. 105

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-17

Parallel Hardware Architecture of the 3D FDTD Algorithm with Convolutional Perfectly Matched Layer Boundary Condition

By Chang Kong and Tao Su
Progress In Electromagnetics Research C, Vol. 105, 161-174, 2020
doi:10.2528/PIERC20072803

Abstract

The finite-difference time-domain (FDTD) algorithm is a numerical stencil computation method, which is widely used in solving electromagnetic simulation problems. However, this algorithm is both computing and storage intensive, so the simulation efficiency is usually restricted in software implementation on CPUs. Recently, hardware accelerators have proved to be effective in improving the performance of various stencil computations. In this paper, we propose a hardware architecture of the 3D FDTD algorithm along with a practical convolutional perfectly matched layer (CPML) boundary condition and implement it on a field programmable gate array (FPGA). By applying the chain processing elements array and temporal parallel strategy, the proposed accelerator can achieve a maximum of 608 mega cells per second (Mcells/s), which is approximately 6 times higher than that of other reported designs on FPGAs. Moreover, the accelerator can maintain the speed above 467 Mcells/s for different grid sizes and CPML layers without modifying the hardware design, which demonstrates the performance stability and flexibility of the architecture under various applications.

Citation


Chang Kong and Tao Su, "Parallel Hardware Architecture of the 3D FDTD Algorithm with Convolutional Perfectly Matched Layer Boundary Condition," Progress In Electromagnetics Research C, Vol. 105, 161-174, 2020.
doi:10.2528/PIERC20072803
http://www.jpier.org/PIERC/pier.php?paper=20072803

References


    1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s Equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    2. Jensen, M. A. and Y. Rahmat-Samii, "Performance analysis of antennas for hand-held transceivers using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 8, 1106-1113, 1994.
    doi:10.1109/8.310002

    3. Orjubin, G., F. Petit, E. Richalot, S. Mengue, and O. Picon, "Cavity losses modeling using lossless FDTD method," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 429-431, 2006.
    doi:10.1109/TEMC.2006.873854

    4. Ziolkowski, R. W., "The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 375-391, 1997.
    doi:10.1109/8.558653

    5. Wang, X., W. Yin, Y. Yu, Z. Chen, J. Wang, and Y. Guo, "A Convolutional Perfect Matched Layer (CPML) for one-step leapfrog ADI-FDTD method and its applications to EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 5, 1066-1076, 2012.
    doi:10.1109/TEMC.2012.2198067

    6. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, Vol. 62, 228-235, 2012.
    doi:10.14429/dsj.62.792

    7. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1324-1327, 2009.
    doi:10.1109/TMAG.2009.2012614

    8. Zygiridis, T. T., "High-order error-optimized FDTD algorithm with GPU implementation," IEEE Transactions on Magnetics, Vol. 49, No. 5, 1809-1812, 2013.
    doi:10.1109/TMAG.2013.2241410

    9. Cicuttin, M., L. Codecasa, B. Kapidani, R. Specogna, and F. Trevisan, "GPU accelerated time-domain discrete geometric approach method for Maxwell’s Equations on tetrahedral grids," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, 2018.
    doi:10.1109/TMAG.2017.2753322

    10. Livesey, M., J. F. Stack, F. Costen, T. Nanri, N. Nakashima, and S. Fujino, "Development of a CUDA implementation of the 3D FDTD method," IEEE Antennas and Propagation Magazine, Vol. 54, No. 5, 186-195, 2012.
    doi:10.1109/MAP.2012.6348145

    11. Jia, C., L. Guo, and P. Yang, "EM scattering from a target above a 1-D randomly rough sea surface using GPU-based parallel FDTD ," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 217-220, 2015.
    doi:10.1109/LAWP.2014.2360415

    12. Lee, K. H., I. Ahmed, R. S.M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
    doi:10.2528/PIER11042002

    13. Ghouwayel, A. A. and Y. Louet, "FPGA implementation of a re-configurable FFT for multi-standard systems in software radio context," IEEE Transactions on Consumer Electronics, Vol. 55, No. 2, 950-958, 2009.
    doi:10.1109/TCE.2009.5174479

    14. Ingemarsson, C., P. Källström, F. Qureshi, and O. Gustafsson, "Efficient FPGA mapping of pipeline SDF FFT cores," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, No. 9, 2486-2497, 2017.
    doi:10.1109/TVLSI.2017.2710479

    15. Choi, S., et al., "Design of FPGA-based LZ77 compressor with runtime configurable compression ratio and throughput," IEEE Access, Vol. 7, 149583-149594, 2019.
    doi:10.1109/ACCESS.2019.2947273

    16. Li, B., L. Zhang, Z. Shang, and Q. Dong, "Implementation of LZMA compression algorithm on FPGA," Electronics Letters, Vol. 50, No. 21, 1522-1524, 2014.
    doi:10.1049/el.2014.1734

    17. Nguyen, D. T., T. N. Nguyen, H. Kim, and H. Lee, "A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 27, No. 8, 1861-1873, 2019.
    doi:10.1109/TVLSI.2019.2905242

    18. Guo, K., et al., "Angel-eye: A complete design flow for mapping CNN onto embedded FPGA," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 37, No. 1, 35-47, 2018.
    doi:10.1109/TCAD.2017.2705069

    19. Fujita, Y. and H. Kawaguchi, "Full-custom PCB implementation of the FDTD/FIT dedicated computer," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1100-1103, 2009.
    doi:10.1109/TMAG.2009.2012633

    20. Okina, K., R. Soejima, K. Fukumoto, Y. Shibata, and K. Oguri, "Power performance profiling of 3-D stencil computation on an FPGA accelerator for efficient pipeline optimization," SIGARCH Comput. Archit. News, Vol. 43, No. 4, 9-14, 2015.
    doi:10.1145/2927964.2927967

    21. Sano, K., Y. Hatsuda, and S. Yamamoto, "Multi-FPGA accelerator for scalable stencil computation with constant memory bandwidth," IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 3, 695-705, 2014.
    doi:10.1109/TPDS.2013.51

    22. Kawaguchi, H. and S. Matsuoka, "Conceptual design of 3-D FDTD dedicated computer with dataflow architecture for high performance microwave simulation," IEEE Transactions on Magnetics, Vol. 51, No. 3, Art No. 7202404, 2015.

    23. Kawaguchi, H., "Improved architecture of FDTD dataflow machine for higher performance electromagnetic wave simulation," IEEE Transactions on Magnetics, Vol. 52, No. 3, Art No. 7206604, 2016.

    24. Waidyasooriya, H. M., Y. Takei, S. Tatsumi, and M. Hariyama, "Open CL-based FPGA-platform for stencil computation and its optimization methodology," IEEE Transactions on Parallel and Distributed Systems, Vol. 28, No. 5, 1390-1402, 2017.
    doi:10.1109/TPDS.2016.2614981

    25. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, 334-339, 2000.
    doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

    26. Giefers, H., C. Plessl, and J. Förstner, "Accelerating finite difference time domain simulations with reconfigurable dataflow computers," SIGARCH Comput. Archit. News, Vol. 41, No. 5, 65-70, 2014.
    doi:10.1145/2641361.2641372

    27. Toivanen, I., T. P. Stefanski, N. Kuster, and N. Chavanne, "Comparison of CPML implementations for the GPU-accelerated FDTD solver," Progress In Electromagnetics Research B, Vol. 19, 61-75, 2011.
    doi:10.2528/PIERM11061002