Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-10-28

Broadband Four Elements PIFA Array for Access-Point MIMO Systems

By Erik Fritz-Andrade, Ricardo Gomez-Villanueva, Jose Alfredo Tirado-Mendez, Luis Alberto Vasquez-Toledo, Arturo Rangel-Merino, and Hildeberto Jardon-Aguilar
Progress In Electromagnetics Research C, Vol. 106, 163-176, 2020
doi:10.2528/PIERC20081202

Abstract

An antenna array formed by four PIFA elements located very close to each other, with low inter-element matching for MIMO applications is proposed. The antenna array consists of four F-inverted wideband radiators, with a fractional bandwidth around 56%, spaced one to each other by a very short distance (< 0.065 λ0) at a centre frequency of 2.55 GHz. The operational bandwidth goes from 1.88 to 3.15 GHz considering the Sii < -10 dB at each port. Moreover, the coupling among ports reaches values below Sij < -10 dB and getting values less than -30 dB at 1.8 GHz, just by employing an uncomplicated technique implemented by a neutralization line between elements. The antenna array gain goes from 2 dB to 6 dB over the operating bandwidth. Concerning MIMO figures of merit, the radiation pattern of each element is orthogonal to each other. The Envelope Correlation Coefficient is below 0.04 at the designed frequency, reaching a peak around 0.082 at 1.8 GHz, but still achieving the requirement for MIMO operation (less than 0.5). The Total Active Reflection Coefficient (TARC) is almost convergent at the design frequency, showing low dependence on random signals at different elements, and finally, the diversity gain reaches values close to 20 dB, making the array suitable for MIMO access point applications.

Citation


Erik Fritz-Andrade, Ricardo Gomez-Villanueva, Jose Alfredo Tirado-Mendez, Luis Alberto Vasquez-Toledo, Arturo Rangel-Merino, and Hildeberto Jardon-Aguilar, "Broadband Four Elements PIFA Array for Access-Point MIMO Systems," Progress In Electromagnetics Research C, Vol. 106, 163-176, 2020.
doi:10.2528/PIERC20081202
http://www.jpier.org/PIERC/pier.php?paper=20081202

References


    1. Telatar, I. E. and AT & T Bell Labs, "Capacity of multi-antenna Gaussian channels,", Tech. Rep., 1995.
    doi:10.1023/A:1008889222784

    2. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-335, Mar. 1998.
    doi:10.1109/TAP.2004.835272

    3. Jensen, M. A. and J. W. Wallace, "A review of antennas and propagation for MIMO wireless communication," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, Nov. 2004.

    4. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 4, 149-172, Nov. 1987.

    5. Browne, D. W., M. Manteghi, M. P. Fitz, and Y. Rahmat-Samii, "Experiments with compact antenna arrays for MIMO radio communications," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 149-172, Nov. 2006.
    doi:10.1109/26.837052

    6. Shiu, D. S., G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Transactions on Communications, Vol. 48, No. 3, 502-513, Mar. 2000.

    7. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New Jersey, 2005.
    doi:10.1109/TCOM.1973.1091578

    8. Lee, W., "Effects on correlation between two mobile radio base-station antennas," IEEE Transactions on Communications, Vol. 21, No. 11, 1214-1224, Nov. 1973.
    doi:10.1109/TAP.1983.1143128

    9. Gupta, I. and A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, Sep. 1983.
    doi:10.1109/LAWP.2002.807570

    10. Janaswamy, R., "Effect of element mutual coupling on the capacity of fixed length linear arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 157-160, 2002.
    doi:10.1109/TWC.2004.830854

    11. Wallace, J. W. and M. A. Jensen, "Mutual coupling in MIMO wireless systems: A rigorous network theory analysis," IEEE Transactions on Wireless Communications, Vol. 3, No. 4, 1317-1325, Jul. 2004.
    doi:10.1109/TVT.2004.825788

    12. Waldschmidt, C., S. Schulteis, and W. Wiesbeck, "Complete RF system model for analysis of compact MIMO arrays," IEEE Transactions on Vehicular Technology, Vol. 53, No. 3, 579-586, May 2004.

    13. Svantesson, T. and A. Ranheim, "Mutual coupling effects on the capacity of multielement antenna systems," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2485-2488, Salt Lake City, USA, May 7–11, 2001.
    doi:10.1109/TCOM.1970.1090428

    14. Lee, W. C. Y., "Mutual coupling effect on maximum-ratio diversity combiners and application to mobile radio," IEEE Transactions on Communication Technology, Vol. 18, No. 6, 779-791, Dec. 1970.
    doi:10.1109/TAP.2003.817983

    15. Yang, F. and Y. R. Samii, "Microstrip antennas integrated with electromagnetic band-gap EBG structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.

    16. Veeramani, A., A. S. Arezomand, J. Vijayakrishnan, and F. B. Zarrabi, "Compact S-shaped EBG structures for reduction of mutual coupling," Fifth International Conference on Advanced Computing & Communication Technologies (ACCT), Haryana, India, Feb. 21–22, 2015.
    doi:10.1049/iet-map:20060220

    17. Diallo, A., C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals," IET Microwaves, Antennas & Propagation, Vol. 2, No. 1, 93-101, 2008.
    doi:10.1109/TAP.2012.2234714

    18. Peng, H., R. Tao, W. Yin, and J. Mao, "A novel compact dual-band antenna array with high isolations realized using the neutralization technique," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1956-1962, Apr. 2013.
    doi:10.1109/TAP.2008.2005469

    19. Chen, S., Y. Wang, and S. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3650-3658, Dec. 2008.
    doi:10.1109/LAWP.2010.2040677

    20. Bhatti, R. A., S. Yi, and S. Park, "Compact antenna array with port decoupling for LTE-standardized mobile phones," IEEE Antennas and Wireless Propagation Letters,, Vol. 8, 1430-1433, 2009.
    doi:10.2528/PIERL13030902

    21. Yu, Y., Y. Jiang, W. Feng, S. Mbayo, and S. Chen, "Compact multiport array with reduced mutual coupling," Progress In Electromagnetics Research Letters, Vol. 39, 161-168, Apr. 2013.
    doi:10.1109/TAP.2013.2263277

    22. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4257-4264, Aug. 2013.

    23. Arya, A. K., A. Patnaik, and M. V. Kartikeyan, "A compact array with low mutual coupling using defected ground structures," IEEE Applied Electromagnetics Conference (AEMC), Kolkata, India, Dec. 18–22, 2011.
    doi:10.1109/LAWP.2012.2232274

    24. Farsi, S., H. Aliakbarian, D. Schreurs, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antennas by using a simple microstrip U-section," IEEE Antennas and Wireless Propagation Letters,, Vol. 11, 1501-1503, 2012.
    doi:10.1109/TAP.2008.2005460

    25. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3411-3419, Nov. 2008.
    doi:10.1049/iet-map.2016.0921

    26. Roshna, T. K., U. Deepak, and P. Mohanan, "Compact UWB MIMO antenna for tridirectional pattern diversity characteristics," IET Microwaves, Antennas & Propagation, Vol. 11, No. 14, 2059-2065, 2017.

    27. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2016.
    doi:10.1109/TAP.2014.2326425

    28. Zhao, L. and K. Wu, "A decoupling technique for four-element symmetric arrays with reactively loaded dummy elements," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4416-4421, Aug. 2014.
    doi:10.1109/LAWP.2017.2777839

    29. Boukarkar, A., X. Q. Lin, Y. Jiang, L. Y. Nie, P. Mei, and Y. Q. Yu, "A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 134-137, Jan. 2018.
    doi:10.1109/TAP.2016.2593932

    30. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, Oct. 2016.
    doi:10.1109/TAP.2017.2780894

    31. Tawk, Y., J. Costantine, and C. G. Christodoulou, "An eight-element reconfigurable diversity dipole system," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 572-581, Feb. 2018.
    doi:10.1109/TMTT.2005.848105

    32. Konanur, A. S., K. Gosalia, S. H. Krishnamurthy, B. Hughes, and G. Lazzi, "Increasing wireless channel capacity through MIMO systems employing co-located antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 6, 1837-1844, Jun. 2005.
    doi:10.1002/mop.28049

    33. Gomez-Villanueva, R., R. Linares-y-Miranda, J. A. Tirado-Mendez, and H. Jardon-Aguilar, "Very broadband PIFA antenna for mobile communications and ultrawideband services," Microwave and Optical Technology Letters, Vol. 56, No. 2, 313-316, Feb. 2014.
    doi:10.1109/TAP.2006.883981

    34. Diallo, A., C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3063-3074, Nov. 2006.
    doi:10.2528/PIERL10100609

    35. Zuo, S.-L., Y.-Z. Yin, W.-J. Wu, Z.-Y. Zhang, and J. Ma, "Investigations of reduction of mutual coupling between two planar monopoles using two λ/4 slots," Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010.
    doi:10.1049/el:20030495

    36. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 1, 2003.
    doi:10.1002/mop.21490

    37. Thaysen, J. and K. B. Jakobsen, "Envelope correlation in (N, N) MIMO antenna array from scattering parameters," Microwave and Optical Technology Letters, Vol. 48, No. 5, 832-834, May 2006.
    doi:10.1002/mmce.22113

    38. Fritz-Andrade, E., H. Jardon-Aguilar, and J. A. Tirado-Mendez, "The correct application of total active reflection coefficient to evaluate MIMO antenna systems and its generalization to N ports," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, e22113, 2020, doi: doi.org/10.1002/mmce.22113.