Vol. 108
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-02
Quasi-Optic Based HE11 Miter Bend at 42 GHz for ECRH Application
By
Progress In Electromagnetics Research C, Vol. 108, 37-48, 2021
Abstract
This paper presents the design and fabrication of HE11 miter bend along with a TM11 to HE11 mode converter and corrugated up-taper, which are the integral parts of a transmission line system (TLS) that carries 200 kW microwave power at 42 GHz from Gyrotron to plasma or calorimetric dummy load. It has a hybrid (HE11) mode. The HE11 mode transmission loss in miter bend is derived using mode-matching techniques and gap loss theory. The gap length (L) in a waveguide of diameter (D = 2a) at a wavelength (λ) for the predicted loss (D ≥ λ) is approximately 1.7[Lλ/2a2]3/2 dB. The HE11 miter bend design incorporates a demountable cooling assembly with a flat mirror. The design and optimization of the proposed miter bend were carried out using CST-microwave studio software. Finally, HE11 miter bend was fabricated along with integrated assembly. The proposed HE11 miter bend with mode converter and corrugated up-taper gives the transmission efficiency of 95.64%.
Citation
Amit Patel Pujita Bhatt Keyur Mahant Alpesh D. Vala Jitendra Chaudhari Hiren Mewada Krishnamachari Sathyanarayan , "Quasi-Optic Based HE11 Miter Bend at 42 GHz for ECRH Application," Progress In Electromagnetics Research C, Vol. 108, 37-48, 2021.
doi:10.2528/PIERC20103004
http://www.jpier.org/PIERC/pier.php?paper=20103004
References

1. Shapiro, M. A. and S. N. Vlasov, "Study of combined transmission line for high power generates by gyrotron in the mm wavelength range," International Journal of Electronics, Vol. 72, 1127-1133, 1992.
doi:10.1080/00207219208925638

2. Singha, U., N. Kumara, H. Khatuna, N. Kumara, V. Yadava, A. Kumara, M. Sharmaa, M. Alariaa, A. Beraa, P. K. Jain, and A. K. Sinh, "Design of 42 GHz gyrotron for Indian fusion tokamak system," Fusion Engineering and Design, Vol. 88, No. 11, 2898-2906, November 2013.
doi:10.1016/j.fusengdes.2013.06.001

3. Singh, U., U. Goswami, H. Khatun, N. Kumar, N. Shekhawat, A. Kumar, V. Yadav, M. Sharma, A. Mishra, S. Sharma, M. Alaria, A. Bera, R. Rao, and A. Sinha, "Design of 42 GHz, 200 kW gyrotro," IEEE International Vacuum Electronics Conference, California, USA, 18-20, May 2010.

4. Thumm, M., "High-power millimetre-wave mode converters in overmoded circular waveguides using periodic wall perturbations," International Journal of Electronics, Vol. 57, No. 6, 1225-1246, 1984.
doi:10.1080/00207218408938998

5. Thumm, M., "High power mode conversion for linearly polarized HE11 hybrid mode output," International Journal of Electronics Theoretical and Experimental, Vol. 61, No. 6, 1135-1153, 1986.
doi:10.1080/00207218608920944

6. Patel, A., R. Goswami, and P. Bhatt, "TM11 to HE11 mode converter in overmoded circular corrugated waveguide," IET Antenna and Microwave Propagation, Vol. 3, No. 8, 1202-1207, 2019.
doi:10.1049/iet-map.2018.5627

7. Nanni, E. A., S. K. Jawla, M. A. Shapiro, P. P. Woskov, and R. J. Temkin, "Low-loss transmission lines for high-power terahertz radiation," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 33, No. 7, 695-714, July 2012.
doi:10.1007/s10762-012-9870-5

8. Thumm, M., V. Erckmann, G. Janzen, W. Kasparek, G. Muller, P. G. Schuller, and R. Wilhelm, "Generation of the gaussian like HE11 mode from gyrotron TE0n mode mixtures at 70GHz," International Journal of Infrared and Millimeter Waves, Vol. 6, No. 6, 459-470, 1985.
doi:10.1007/BF01010037

9. Tax, D. S., Mode conversion losses in overmoded millimeter wave transmission lines, Massachusetts Institute of Technology, September 2008.

10. Vikharev, A. A., G. G. Denisov, S. V. Kuzikov, and D. I. Sobolev, "New TE01 waveguide bends," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, No. 6, 556-565, 2009.
doi:10.1007/s10762-009-9478-6

11. Doane, J. L. and C. P. Moeller, "HE11 miter bends and gaps in circular corrugated waveguide," International Journal of Electronics, Vol. 77, No. 4, 489-509, 1994.
doi:10.1080/00207219408926081

12. Shapiro, M. A. and R. J. Temkin, "High power miter-bend for the next linear collider," Proceedings of the 1999 Particle Accelerator Conference (Cat. No. 99CH36366), Vol. 2, 836-838, IEEE, New York, USA, March 1999.

13. Kowalski, E. J., Miter bend loss and higher order mode content measurements in overmoded millimeter-wave transmission lines, Ph.D. diss., Massachusetts Institute of Technology, 2010.

14. Vaganov, R. B., "Measurements of losses of certain quasi-optical waveguide elements," Radio Engineering and Electronic Physics, Vol. 8, 1228-1231, 1963.

15. Sporleder, F., "A compact 90 corner with expanded diameter and elliptic mirror for circular waveguide," International Conference on Millimetric Waveguide Systems , 68-71, London (I.E.E. Conference Publication No. 146), 1976.

16. Vlasov, S. N. and M. A. Shapiro, "Optimization of a miter bend for oversized waveguide with corrugated walls," Radio Engineering and Electronic Physics, Vol. 36, 2322-2326 , 1991, (in Russian issue).

17. Graubner, T., "Design and measurements of HE11 + HE12 mode converters," 17th International Conference on Infrared and Millimeter Waves, Vol. 1929, International Society for Optics and Photonics, Chengdu, China, 1992.

18. Patel, A., P. Bhatt, K. K. Mahant, A. D. Vala, K. Sathyanarayan, S. V. Kulkarni, and D. Rathi, "Oversized circular corrugated waveguides operated at 42 GHz for ECRH application," Progress In Electromagnetics Research M, Vol. 88, 73-82, 2020.
doi:10.2528/PIERM19102302

19. Denison, D. R., Gyrotron mode converter mirror shaping based on phase retrieval from intensity measurement, Massachusetts Institute of Technology, June 1999.

20. Sathyanarayana, K., S. V. Kulkarni, A. Patel, P. Bhatt, A. Vala, H. Mewada, and K. Mahant, "Sensitivity analysis on predicted microwave performance of mode converters with geometrical tolerances for 42-GHz transmission line components," Fusion Science and Technology, Vol. 75, No. 3, 234-243, April 2019.
doi:10.1080/15361055.2018.1557984