Vol. 108
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-03
A Novel Compact Substrate Integrated Waveguide Filter Using Miniaturized Stepped Impedance Metamaterial Unit Cell
By
Progress In Electromagnetics Research C, Vol. 108, 49-61, 2021
Abstract
Novel substrate integrated waveguide bandpass filters are presented by using a complementary split-ring resonator. The proposed stepped impedance octagonal octagonal complementary split-ring resonator (SI-OCSRR) presents high miniaturization compared to the classical octagonal complementary split-ring resonator (O-CSRR). Additionally, two different filter configurations consisting of two cascaded cells with different coupling between the CSRR are proposed. A comparison between the proposed filters and the other ones reported in the literature has proven the advantages of the proposed filters, namely compact size, high in-band return loss, and ease of integration. A good agreement between the simulated and measured results has been reached, which verifies the validity of the design methodology.
Citation
Zied Troudi Jan Machac Lotfi Osman , "A Novel Compact Substrate Integrated Waveguide Filter Using Miniaturized Stepped Impedance Metamaterial Unit Cell," Progress In Electromagnetics Research C, Vol. 108, 49-61, 2021.
doi:10.2528/PIERC20111401
http://www.jpier.org/PIERC/pier.php?paper=20111401
References

1. Wu, G. K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits — A new concept for high-frequency electronics and optoelectronics," 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003, Telsiks 2003, Vol. 1, P-III, IEEE, 2003.

2. Wu, K., "Integration and interconnect techniques of planar and non-planar structures for microwave and millimeter-wave circuits-current status and future trend," Microwave Conference, 2001, APMC 2001, Vol. 2, 411-416, IEEE, Asia-Pacific, 2001.
doi:10.1109/APMC.2001.985398

3. Grigoropoulos, N., et al., "Substrate Integrated Folded Waveguides (SIFW) and filters," IEEE Microwave Wireless Compon Lett., Vol. 15, No. 12, 829-831, 2005.
doi:10.1109/LMWC.2005.860027

4. Rong, Y., K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich, "Low-Temperature Cofired Ceramic (LTCC) ridge waveguide bandpass chip filters," IEEE Trans. Microwave Theory Techn., Vol. 47, No. 12, 2317-2324, 1999.
doi:10.1109/22.808977

5. Wang, Y., et al., "Half Mode Substrate Integrated Waveguide (HMSIW) bandpass filter," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 4, 265-267, 2007.
doi:10.1109/LMWC.2007.892958

6. Moitra, S. and P. S. Bhowmik, "Modelling and analysis of Substrate Integrated Waveguide (SIW) and Half-Mode SIW (HMSIW) band-pass filter using reactive longitudinal periodic structures," AEU — Int. J. Electron. Commun., Vol. 70, No. 12, 1593-1600, 2016.
doi:10.1016/j.aeue.2016.09.005

7. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKHI, Vol. 10, No. 14, 509-514, January–February 1968.
doi:10.1070/PU1968v010n04ABEH003699

8. Solymar, L. and E. Shamonina, Waves in Metamaterials, University Press, 2017.

9. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 2016 13th International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE, 2016.

10. Keshavarz, S., et al., "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU — International Journal of Electronics and Communications, Vol. 111, 152913, 2019.
doi:10.1016/j.aeue.2019.152913

11. Karthikeyan, S. S. and R. S. Kshetrimayum, "Harmonic suppression of parallel coupled micro-strip line band-pass filter using CSRR," Progress In Electromagnetics Research Letters, Vol. 7, 193-201, 2009.
doi:10.2528/PIERL08122602

12. Falcone, F., et al., "Babinet principle applied to the design of meta-surfaces and metamaterials," Phys. Rev. Lett., Vol. 93, No. 1, 97401, 2004.

13. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-epsilon stopband microstrip lines based on complementary split-ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, June 2004.
doi:10.1109/LMWC.2004.828029

14. Crnojevic-Bengin, V., (Ed.), Advances in Multi-band Microstrip Filters, Cambridge University, 2015.
doi:10.1017/CBO9781139976763

15. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

16. Nwajana, A. O., A. Dainkeh, and K. S. K. Yeo, "Substrate Integrated Waveguide (SIW) bandpass filter with novel microstrip-CPW-SIW input coupling," Journal of Microwaves. Optoelectronics and Electromagnetic Applications, Vol. 16, No. 2, 393-402, 2017.
doi:10.1590/2179-10742017v16i2793

17. Deslandes, D., "Design equations for tapered microstrip-to-substrate integrated waveguide transitions," 2010 IEEE MTT-S International Microwave Symposium, 2010.

18. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filter," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156

19. Pozar, D. M., Microwave Engineering, 3rd Ed., Chapter 8, Wiley, Hoboken, NJ, 2005.

20. Huang, L., I. D. Robertson, W. Wu, and N. Yuan, "Substrate integrated waveguide filters with broadside-coupled complementary split-ring resonators," IET Microwaves, Ante. Propagat., Vol. 7, No. 10, 795-801, 2013.
doi:10.1049/iet-map.2013.0117

21. Yan, T., X.-H. Tang, Z.-X. Xu, and D. Lu, "A novel type of band-pass filter using complementary open-ring resonator loaded HMSIWwith an electric cross-coupling," Microwave Opt. Technol. Lett., Vol. 58, No. 4, 998-1001, 2016.
doi:10.1002/mop.29719

22. Delmonte, N., L. Silvestri, M. Bozzi, and L. Perregrini, "Compact half-mode SIW cavity filters designed by exploiting resonant mode control," Int. J. RF Microwave Comput.-Aided Eng., Vol. 26, 72-79, 2016.
doi:10.1002/mmce.20940

23. Azad, A. R. and A. Mohan, "Sixteenth-mode substrate integrated waveguide bandpass filter loaded with complementary split-ring resonator," Electron. Lett., Vol. 53, No. 8, 546-547, 2017.
doi:10.1049/el.2016.3620

24. Chu, P., W. Hong, M. Tuo, K.-L. Zheng, W.-W. Yang, F. Xu, and K. Wu, "Dual-mode substrate integrated waveguide filter with flexible response," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 3, 824-830, 2017.
doi:10.1109/TMTT.2016.2633346

25. Danaeian, M. and K. Afrooz, "Compact metamaterial unit-cell based on stepped-impedance resonator technique and its application to miniaturize substrate integrated waveguide filter and diplexer," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21537, 2019.
doi:10.1002/mmce.21537