Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-14
Miniaturized Circularly-Polarized Patch Antenna Using an Artificial Metamaterial Substrate
By
Progress In Electromagnetics Research C, Vol. 109, 1-12, 2021
Abstract
An artificially two-dimensional metamaterial (ATDM) substrate is proposed as an artificial metamaterial high-constitutive parameter substrate for miniaturizing of a circularly-polarized microstrip antenna. In a circularly-polarized antenna, the electric and magnetic field directions are changing, which requires a two-dimensional metamaterial unit cell. The presented ATDM substrate raises the permeability and permittivity of the underneath substrate for a circularly-polarized patch antenna, and it is constructed of periodically arranged split-ring resonator (SRR) circuits implemented in a low permittivity dielectric underneath substrate. The ATDM attains equal permittivity and permeability material (εr ≅ μr), which neutralizes the destructive effect of the increased permittivity on the bandwidth. In addition, the ATDM structure is implemented in printed circuit board technology. The area of the ATDM antenna at 2.45 GHz is approximately 75% smaller than a usual microstrip antenna. The proposed antenna bandwidth is enhanced compared to the antennas with high-permittivity substrates. The proposed ATDM substrate antenna is fabricated and measured, and comparisons show good agreements between simulated and measured results.
Citation
Jamal Zaid Tayeb Denidni , "Miniaturized Circularly-Polarized Patch Antenna Using an Artificial Metamaterial Substrate," Progress In Electromagnetics Research C, Vol. 109, 1-12, 2021.
doi:10.2528/PIERC20111402
http://www.jpier.org/PIERC/pier.php?paper=20111402
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., Wiley, New York, 1997.

2. Esfahlani, S. H. S., A. Tavakoli, and P. Dehkhoda, "A compact single-layer dual-band microstrip antenna for satellite applications," IEEE Antennas Wireless Propag. Lett., Vol. 10, 931-934, 2011.
doi:10.1109/LAWP.2011.2167121

3. Chakraborty, U., A. Kundu, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact dual-band microstrip antenna for IEEE 802.11a WLAN application," IEEE Antennas Wireless Propag. Lett., Vol. 13, 407-410, 2014.
doi:10.1109/LAWP.2014.2307005

4. Reddy, B. R. S. and D. Vakula, "Compact Zigzag-shaped-slit microstrip antenna with circular defected ground structure for wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 678-681, 2015.
doi:10.1109/LAWP.2014.2376984

5. Wong, K. and H. Tung, "An inverted U-shaped patch antenna for compact operation," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1647-1648, 2003.
doi:10.1109/TAP.2003.813643

6. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Trans. Antennas Propag., Vol. 47, No. 12, 1785-1794, 1999.
doi:10.1109/8.817654

7. Mookiah, P. and K. R. Dandekar, "Metamaterial-substrate antenna array for MIMO communication system," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3283-3292, 2009.
doi:10.1109/TAP.2009.2028638

8. Mosallaei, H. and K. Sarabandi, "Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 45-52, 2007.
doi:10.1109/TAP.2006.886566

9. Pinsakul, A., S. Chaimool, and P. Akkaraekthalin, "Miniaturized microstrip patch antenna printed on magneto-dielectic metasubstrate," 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), 1-4, Phetchaburi, 2012.

10. Kumar, S. and D. K. Vishwakarma, "Miniaturisation of microstrip patch antenna using an artificial planar magneto-dielectric meta-substrate," IET Microw. Antennas Propag., Vol. 10, No. 11, 1235-1241, 2016.
doi:10.1049/iet-map.2016.0044

11. Kim, D., "Planar magneto-dielectric metasubstrate for miniaturization of a microstrip patch antenna," Microw. Opt. Technol. Lett., Vol. 54, No. 12, 2871-2874, 2012.
doi:10.1002/mop.27172

12. Farahani, M., J. Zaid, T. A. Denidni, and M. Nedil, "Miniaturized two dimensional circular polarized magneto-dielectric substrate antenna," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1103-1104, Fajardo, 2016.

13. Farzami, F., K. Forooraghi, and M. Norooziarab, "Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1540-1542, 2011.
doi:10.1109/LAWP.2011.2181968

14. Farahani, M., M. Akbari, M. Nedil, A. R. Sebak, and T. A. Denidni, "Miniaturised circularly-polarised antenna with high-constitutive parameter substrate," Electronics Letters, Vol. 53, No. 20, 1343-1344, September 28, 2017.
doi:10.1049/el.2017.1690

15. Zaid, J., M. Farahani, and T. A. Denidni, "Magneto-dielectric substrate-based microstrip antenna for RFID applications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 10, 1389-1392, August 16, 2017.
doi:10.1049/iet-map.2016.0931

16. Borah, K. and N. S. Bhattacharyya, "Magneto-dielectric material with nano ferrite inclusion for microstrip antennas: Dielectric characterization," IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 17, No. 6, 1676-1681, 2010.
doi:10.1109/TDEI.2010.5658216

17. Algadami, A. S. M., M. F. Jamlos, P. J. Soh, and M. R. Kamarudin, "Polymer (PDMS-Fe3O4) magneto-dielectric substrate for MIMO antenna array," Appl. Phys. A, Vol. 122, No. 9, 2016.

18. Sharma, P. and K. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 31, No. 6, 949-955, 1983.
doi:10.1109/TAP.1983.1143162

19. Smythe, W. R., Static and Dynamic Electricity, McGraw Hill, New York, 1968.

20. Shi, Y., Z. Y. Li, K. Li, L. Li, and C. H. Liang, "A retrieval method of effective electromagnetic parameters for inhomogeneous metamaterials," IEEE Trans. Micow. Theory Tech., Vol. 65, No. 4, 1160-1178, 2017.
doi:10.1109/TMTT.2016.2638424