Vol. 108
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-11
A Tri-Band Negative Group Delay Circuit for Multiband Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 108, 159-169, 2021
Abstract
A tri-band negative group delay (NGD) microwave circuit for multiband wireless applications is proposed and self-matched without the need for external matching networks. The frequency range can be influenced by the characteristic impedance of the microstrip lines. Under the condition that the microstrip circuit can be implemented with the common printed circuit board (PCB) fabrication technology, the frequency ratio of the highest NGD band to the lowest NGD band can vary between 3.8 and 10.9. For verification, a 1.2/3.5/5.8-GHz tri-band NGD circuit for Beidou B2, WiMax, and WLAN application is designed, fabricated, and measured. From the measured results, the NGD times are -1.08 ns, -1.19 ns, and -1.09 ns at three NGD central frequencies with insertion losses of 16.4 dB, 24.6 dB, and 18.9 dB, respectively. And the measured NGD bandwidths are 12.40% for the lower band, 8.60% for the center band, and 3.59% for the upper band, in which the return losses are greater than 16 dB.
Citation
Yuwei Meng Zhongbao Wang Shao-Jun Fang Hongmei Liu , "A Tri-Band Negative Group Delay Circuit for Multiband Wireless Applications," Progress In Electromagnetics Research C, Vol. 108, 159-169, 2021.
doi:10.2528/PIERC20112201
http://www.jpier.org/PIERC/pier.php?paper=20112201
References

1. Ravelo, B., "Recovery of microwave-digital signal integrity with NGD circuits," Photon. Optoelectron, Vol. 2, No. 1, 8-16, Jan. 2013.

2. Eudes, T. and B. Ravelo, "Cancellation of delays in the high-rate interconnects with UWB NGD active cells," Appl. Phys. Res., Vol. 3, No. 2, 81-88, Nov. 2011.

3. Ahn, K., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 9, 2139-2147, Sept. 2009.
doi:10.1109/TMTT.2009.2027082

4. Ahn, K., R. Ishikawa, and K. Honjo, "Low noise group delay equalization technique for UWB InGaP/GaAs HBT LNA," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 7, 405-407, Jul. 2010.
doi:10.1109/LMWC.2010.2049441

5. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.1109/ACCESS.2020.2977100

6. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," Int. J. Electron. Commun., Vol. 123, Art. No. 153297, Aug. 2020.
doi:10.1016/j.aeue.2020.153297

7. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative Group-delay circuit," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 5, 1116-1125, May 2010.
doi:10.1109/TMTT.2010.2045576

8. He, L., W. Li, J. Hu, and Y. Xu, "A 24-GHz source-degenerated tunable delay shifter with negative group delay compensation," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 8, 687-689, Aug. 2018.
doi:10.1109/LMWC.2018.2843290

9. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesiser," Electron. Lett., Vol. 29, No. 9, 798-800, Apr. 1993.
doi:10.1049/el:19930533

10. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized negative group delay circuit using defected microstrip structure and lumped elements," IEEE MTT-S Int. Microwave Symp. Dig., 1-3, Seattle, WA, USA, Jun. 2013.

11. Chaudhary, G. and Y. Jeong, "A design of compact wideband negative group delay network using cross coupling," Microw. Opt. Technol. Lett., Vol. 56, No. 11, 2612-2616, Nov. 2014.

12. Chaudhary, G. and Y. Jeong, "Negative group delay phenomenon analysis in power divider: Coupling matrix approach," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 7, No. 9, 1543-1551, Sept. 2017.
doi:10.1109/TCPMT.2017.2696972

13. Ravelo, B., "Negative group-delay phenomenon analysis with distributed parallel interconnect line," IEEE Trans. Electromagn. Compat., Vol. 58, No. 2, 573-580, Apr. 2016.
doi:10.1109/TEMC.2016.2516899

14. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 62, No. 2, 234-243, Feb. 2014.
doi:10.1109/TMTT.2013.2295555

15. Wu, C. M. and T. Itoh, "Maximally flat negative group delay circuit: A microwave transversal filter approach," IEEE Trans. Microwave Theory Tech., Vol. 6, No. 6, 1330-1342, Jun. 2014.
doi:10.1109/TMTT.2014.2320220

16. Wang, Z., Y. Cao, T. Shao, S. Fang, and H. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 4, 290-292, Apr. 2018.
doi:10.1109/LMWC.2018.2811254

17. Chaudhary, G. and Y. Jeong, "Arbitrary terminated negative group delay circuit using signal interference concept," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 10, 1-7, Jun. 2020.
doi:10.1002/mmce.22341

18. Kim, K. and C. Nguyen, "A SiGe BiCMOS concurrent K/V dual-band 16-way power divider and combiner," IEEE Trans. Circuits Syst. I: Regul. Pap., Vol. 65, No. 6, 1850-1861, Jun. 2018.
doi:10.1109/TCSI.2017.2766212

19. Yang, G., S. Zhang, J. Li, Y. Zhang, and G. F. Pedersen, "A multi-band magneto-electric dipole antenna with wide beam-width," IEEE Access, Vol. 8, 68820-68827, Apr. 2020.
doi:10.1109/ACCESS.2020.2986292

20. Gomez-Garcıa, R., J. Rosario-De Jesus, and D. Psychogiou, "Multi-band bandpass and bandstop RF filtering couplers with dynamically-controlled bands," IEEE Access, Vol. 6, 32321-32327, Jun. 2018.
doi:10.1109/ACCESS.2018.2844868

21. Choi, H., Y. Jeong, J. Lim, S. Eom, and Y. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 1, 19-21, Jan. 2011.
doi:10.1109/LMWC.2010.2089675

22. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 8, 521-523, Aug. 2014.
doi:10.1109/LMWC.2014.2322445

23. Taher, H. and R. Farrell, "Dual wide-band miniaturized negative group delay circuit using open circuit stubs," Microwave Opt. Technol. Lett., Vol. 60, No. 2, 428-432, Jul. 2018.
doi:10.1002/mop.30979

24. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070-1076, Dec. 2018.
doi:10.13164/re.2018.1070

25. Shao, T., S. Fang, Z. Wang, H. Liu, and S. Fu, "A novel dual-band negative group delay microwave circuit," IEEE Radio Wirel. Symp. (RWS), 1-3, May 2019.

26. Meng, Y., Z. Wang, S. Fang, T. Shao, H. Liu, and Z. Chen, "Dual-band negative group delay microwave circuit with low signal attenuation and arbitrary frequency ratio," IEEE Access, Vol. 8, 49908-49919, Mar. 2020.
doi:10.1109/ACCESS.2020.2978545

27. Xiao, J. and Q. Wang, "Individually controllable tri-band negative group delay circuit using defected microstrip structure," Cross Strait Quad-Regional Radio Sci. Wirel. Technol. Conf., 1-3, Taiyuan, China, 2019.

28. Ravelo, B., "Resistive and distributed multiband NGD active circuit," URSI Asia-Pac. Radio Sci. Conf. (URSI AP-RASC), 1-4, South Korea, Aug. 2016.

29. Ravelo, B., "Innovative theory on multiband NGD topology based on feedback-loop power combiner," IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 63, No. 8, 738-742, Aug. 2016.
doi:10.1109/TCSII.2016.2531101