Vol. 109
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-23
Compact Active Duplexer Based on CSRR and Interdigital Loaded Microstrip Coupled Lines for LTE Application
By
Progress In Electromagnetics Research C, Vol. 109, 27-37, 2021
Abstract
In this paper, a four-port compact active duplexer based on a complimentary split ring resonator (CSRR) and interdigital loaded microstrip coupled lines (CSRR-IL MCL) is presented. Interdigital capacitor is used on the top layer of the proposed structure and CSRR transmission lines are used on the bottom layer of the coupled lines in order to increase the coupling of the proposed circuit and create triple band resonances, respectively. The proposed active duplexer has one input port and three output ports operating in three distinct operation frequencies which are 1.4 GHz, 1.8 GHz, and 3.2 GHz. The active duplexer is designed to target LTE applications which are prevalent among the new technologies and devices. The input signal is split in terms of frequency into the three designed frequencies and is amplified by 13 dB gain of the amplifiers placed at the output ports. The fractional bandwidths of the proposed structure at 1.4 GHz, 1.8 GHz, and 3.2 GHz are 5.2%, 2.8%, and 9.4%, respectively. It is worth mentioning that the size of the proposed active duplexer is 0.29λ0×0.38λ0. The design guide of the proposed structure is presented, and it will be shown that the simulation as well as the measurement results of the proposed active duplexer have an acceptable agreement with each other. It should be noted that the VSWR of the proposed structure is less than 1.5 which means that the active duplexer has low return loss, and it is the plus point of it.
Citation
Saeed Keshavarz, Rasool Keshavarz, and Abdolali Abdipour, "Compact Active Duplexer Based on CSRR and Interdigital Loaded Microstrip Coupled Lines for LTE Application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2021.
doi:10.2528/PIERC20112307
References

1. Sundaram, B. and P. N. Shastry, "A novel electronically tunable active duplexer for wireless transceiver applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2584-2592, 2006.
doi:10.1109/TMTT.2006.872922

2. Zheng, B., S.Wong, S. Feng, L. Zhu, and Y. Yang, "Multi-mode bandpass cavity filters and duplexer with slot mixed-coupling structure," IEEE Access, Vol. 6, 16353-16362, 2018.
doi:10.1109/ACCESS.2017.2766293

3. Park, J., S. Jin, K. Moon, and B. Kim, "Wide-band duplexer based on electrical balance of hybrid transformer having two notches," Electronics Letters, Vol. 52, No. 13, 16353-16362, 2016.

4. Iwaki, M., T. Tanaka, M. Ueda, and Y. Satoh, "Design consideration on converged Rx SAW duplexer module for multiband RF front end," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4629-4635, 2017.
doi:10.1109/TMTT.2017.2742955

5. Van Liempd, B., A. Visweswaran, S. Ariumi, S. Hitomi, P. Wambacq, and J. Craninckx, "Adaptive RF front-ends using electrical-balance duplexers and tuned SAW resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4621-4628, 2017.
doi:10.1109/TMTT.2017.2728039

6. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

7. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.

8. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," IEEE URSI GASS, Rome, Italy, 2020.

9. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," 19th Iranian Conference on Electrical Engineering, 1-5, 2011.

10. Cai, Q., W. Che, G. Shen, and Q. Xue, "Wideband high-efficiency power amplifier using D/CRLH bandpass filtering matching topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 6, 2393-2405, 2019.
doi:10.1109/TMTT.2019.2909892

11. Keshavarz, R. and N. Shariati, "Low profile metamaterial band-pass filter loaded with 4-turn complementary spiral resonator for WPT applications," 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2020.

12. Cai, Q., W. Che, G. Shen, and Q. Xue, "Wideband high-efficiency power amplifier using D/CRLH bandpass filtering matching topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 6, 2393-2405, 2019.
doi:10.1109/TMTT.2019.2909892

13. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 2016 13th International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2016.

14. Mazani, Z., A. Abdipour, and K. Afrooz, "Active dual-band power divider and active quad-plexer based on traveling wave amplification and D-CRLH transmission line," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 3, 480-484, 2020.
doi:10.1109/TCSII.2019.2917750

15. Kumar, M., Sk. N. Islam, G. Sen, S. K. Parui, and S. Das, "Design of dual-band Wilkinson power divider using CRLH transmission line based on CSRR," 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), 2017.

16. Keshavarz, R. and M. Movahhedi, "A compact and wideband coupled-line coupler with high coupling level using shunt periodic stubs," Radioengineering, Vol. 22, No. 1, 323-327, 2013.

17. Mocanu, I. A. and T. Petrescu, "Novel dual band hybrid rat-race coupler with CRLH and D-CRLH transmission lines," Asia-Pacific Microwave Conference 2011, 2011.

18. Yamagami, K., T. Ueda, and T. Itoh, "Enhanced bandwidth of asymmetric backward-wave directional couplers by using dispersion of nonreciprocal CRLH transmission lines," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019.

19. Zhang, J., S. Yan, and G. A. E. Vandenbosch, "Radial CRLH-TL-based dual-band antenna with frequency agility," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5664-5669, 2020.
doi:10.1109/TAP.2020.2975249

20. Alibakhshikenari, M., B. S. Virdee, M. Khalily, P. Shukla, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimetre-wave applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1129-1133, 2019.
doi:10.1049/iet-map.2018.5101

21. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits," Scientific Reports, Vol. 10, No. 1, 1-9, 2020.
doi:10.1038/s41598-019-56847-4

22. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU-International Journal of Electronics and Communications, Vol. 111, 1-5, 2019.

23. Lee, H. and T. Itoh, "Dual band isolation circuits based on CRLH transmission lines for triplexer application," Asia-Pacific Microwave Conference 2011, 2011.

24. Mazani, Z., A. Abdipour, and K. Afrooz, "Matrix power amplifier with open-circuit composite right-/left-handed transmission line," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 3, 231-233, 2019.
doi:10.1109/LMWC.2019.2893326

25. Ji, S. H., S. Eun, C. S. Cho, J. W. Lee, and J. Kim, "Linearity improved Doherty power amplifier using composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, 533-535, 2008.
doi:10.1109/LMWC.2008.2001014

26. Xiong, X., Y. Luo, Y. Zhang, X. Ma, P. Wu, and L. Chen, "A high-efficiency Class-F power amplifier using double CRLH-TL for LTE application," 2014 15th International Conference on Electronic Packaging Technology, 2014.

27. Wu, C. M., Y. Dong, J. S. Sun, and T. Itoh, "Ring-resonator-inspired power recycling scheme for gain-enhanced distributed amplifier-based CRLH-transmission line leaky wave antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 4, 1027-1037, 2012.
doi:10.1109/TMTT.2012.2183610

28. Keshavarz, R., A. Mohammadi, and A. Abdipour, "A quad-band distributed amplifier with E-CRLH transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4188-4194, 2013.
doi:10.1109/TMTT.2013.2288939

29. Simion, S. and G. Bartolucci, "Design considerations on balanced CRLH single-ended dual-fed distributed amplifier," 2014 International Semiconductor Conference (CAS), 2014.

30. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

31. Elkholy, M., M. Mikhemar, H. Darabi, and K. Entesari, "Low-loss integrated passive CMOS electrical balance duplexers with single-ended LNA," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 5, 1544-1559, 2016.
doi:10.1109/TMTT.2016.2541118

32. Laughlin, L., C. Zhang, M. A. Beach, K. A. Morris, and J. L. Haine, "Passive and active electrical balance duplexers," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 1, 94-98, 2016.
doi:10.1109/TCSII.2015.2482399

33. Lee, H., J. H. Choi, and T. Itoh, "Active diplexer based on isolation circuits imbedded low noise amplifiers," 2015 European Microwave Conference (EuMC), 2015.