Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-05
Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications
By
Progress In Electromagnetics Research C, Vol. 109, 169-186, 2021
Abstract
This paper proposes a new integration of compact ultra-wideband (UWB) slotted monopole antenna with a diplexer and rectifier for simultaneous energy harvesting and data communication applications. The antenna is composed of four symmetrical circularly slotted patches, a feed line, and a ground plane. A slotline open loop resonator based diplexer is implemented to separate the required signal from the antenna without extra matching circuit. A microwave rectifier based on the voltage doubler topology is designed for RF energy harvesting. The prototypes of the proposed antenna, diplexer, and rectifier are fabricated, measured, and compared with the simulation results. The measurement results show that the fractional impedance bandwidth of proposed UWB antenna reaches 149.7% (2.1GHz-14.6 GHz); the diplexer minimum insertion losses (|S21|, |S31|) are 1.37 dB and 1.42 dB at passband frequencies; the output isolation (|S23|) is better than 30 dB from 1 GHz to 5 GHz; and the peak RF-DC conversion efficiency of the rectifier is 32.8% at an input power of -5 dBm. The overall performance of the antenna with a diplexer and rectifier is also studied, and it is found that the proposed new configuration is suitable for simultaneous microwave energy harvesting and data communication applications.
Citation
Geriki Polaiah Krishnamoorthy Kandasamy Muralidhar Kulkarni , "Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications," Progress In Electromagnetics Research C, Vol. 109, 169-186, 2021.
doi:10.2528/PIERC20112802
http://www.jpier.org/PIERC/pier.php?paper=20112802
References

1. Krikidis, I., T. Stelios, S. Nikolaou, G. Zheng, D. W. Kwan, and R. Schober, "Simultaneous wireless information and power transfer in modern communication systems," IEEE Communications Magazine, Vol. 52, 104-110, 2014.
doi:10.1109/MCOM.2014.6957150

2. Shinohara, N., Wireless Power Transfer via Radio Waves, Wiley, Hoboken, 2014.

3. Sun, H. and W. Geyi, "A new rectenna with all polarization receiving capability for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 814-817, 2016.
doi:10.1109/LAWP.2015.2476345

4. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018.
doi:10.1109/ACCESS.2018.2848907

5. Lin, W., R. W. Ziolkowski, and J. Huang, "Electrically small low-profile, highly efficient Huygens dipole rectennas for wirelessly powering internet of things devices," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3670-3679, 2019.
doi:10.1109/TAP.2019.2902713

6. Wang, M., Y. Fan, L. Yang, Y. Li, J. Feng, and Y. Shi, "Compact dual band rectenna for RF energy harvest based on a tree like antenna," IET Microwaves Antennas and Propagation, Vol. 13, No. 9, 1350-1357, 2019.
doi:10.1049/iet-map.2018.5704

7. Li, X., L. Yang, and L. Huang, "Novel design of 2.45 GHz rectenna element and array for wireless power transmission," IEEE Access, Vol. 7, 28356-28362, 2019.
doi:10.1109/ACCESS.2019.2900329

8. Hu, Y. Y., S. Sun, and H. Xu, "Compact collinear quasi Yagi antenna array for wireless energy harvesting," IEEE Access, Vol. 8, 35308-35317, 2020.
doi:10.1109/ACCESS.2020.2974815

9. Sun, H., H. He, and J. Huang, "Polarization insensitive rectenna arrays with different power combining strategies," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 492-496, 2020.
doi:10.1109/LAWP.2020.2968616

10. Takabayashi, N., N. Shinohara, T. Mitani, M. Furukawa, and T. Fujiwara, "Rectification improvement with flat topped beams on 2.45 GHz rectenna arrays," IEEE Transations on Microwave Theory and Techniques, Vol. 68, No. 3, 1151-1163, 2020.
doi:10.1109/TMTT.2019.2951098

11. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "A dual band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873

12. Nie, M. J., X. X. Yang, G. N. Tan, and B. Han, "A compact 2.45 GHz broadband rectenna using grounded coplanar waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 986-989, 2015.
doi:10.1109/LAWP.2015.2388789

13. Song, C., Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, "A high efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719

14. Song, C., Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, "Novel compact and broadband frequency selectable rectennas for a wide input power and load impedance range," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3306-3316, 2018.
doi:10.1109/TAP.2018.2826568

15. Shi, Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 814-822, 2019.
doi:10.1109/TAP.2018.2882632

16. Shi, Y., J. Jing, Y. Fan, L. Yang, J. Pang, and M. Wang, "Efficient RF energy harvest with a novel broadband Vivaldi rectenna," Microwave and Optical Technology Letters, Vol. 60, 2420-2425, 2018.

17. Lee, C. H. and Y. H. Chang, "Design of a broadband circularly polarized rectenna for microwave power transmission," Microwave and Optical Technology Letters, Vol. 57, 702-706, 2014.

18. Lu, P., K. M. Huang, Y. Yang, F. Cheng, and L. Wu, "Frequency reconfigurable rectenna with an adaptive matching stub for microwave power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 956-960, 2019.
doi:10.1109/LAWP.2019.2906671

19. Lu, P., C. Song, and K. M. Huang, "A compact rectenna design with wide input power range for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 35, No. 7, 6705-6710, 2020.
doi:10.1109/TPEL.2019.2963422

20. Yang, X. X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Q. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550

21. Zhu, G. L., J. X. Du, X. X. Yang, Y. G. Zhou, and S. Gao, "Dual-polarized communication rectenna array for simultaneous wireless information and power transmission," IEEE Access, Vol. 7, 141978-141986, 2019.
doi:10.1109/ACCESS.2019.2943611

22. Lin, W. and R. W. Ziolkowski, "Electrically small Huygens antenna-based fully integrated wireless power transfer and communication system," IEEE Access, Vol. 7, 39762-39769, 2019.
doi:10.1109/ACCESS.2019.2903545

23. Li, X. T., F. Cheng, P. Lu, and K. Huang, "High isolation diplexer using stub-loaded resonators," Electronic Letters, Vol. 55, No. 14, 800-801, 2019.
doi:10.1049/el.2019.1201

24. Zhang, Z. C., S. W. Wong, J. Y. Lin, H. Liu, L. Zhu, and Y. He, "Design of multistate diplexers on uniform and stepped-impedance stub-loaded resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1452-1460, 2019.
doi:10.1109/TMTT.2019.2893656

25. Wong, S. W., B. L. Zheng, J. Y. Lin, Z. C. Zhang, Y. Yang, L. Zhu, and Y. He, "Design of three-state diplexer using a planar triple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 9, 4040-4046, 2018.
doi:10.1109/TMTT.2018.2842791

26. Xiao, J. K., Y. Li, and J. G. Ma, "Compact and high isolated triangular split-ring diplexer," Electronic Letters, Vol. 54, No. 10, 661-663, 2018.
doi:10.1049/el.2018.0523

27. Xiao, J. K., M. Zhang, and J. G. Ma, "A compact and high-isolated multi resonator-coupled diplexer," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 999-1001, 2018.
doi:10.1109/LMWC.2018.2873214

28. Chen, X., X. Yu, and S. Sun, "Design of high-performance microstrip diplexers with stub-loaded parallel-coupled lines," Electronic Letters, Vol. 53, No. 15, 1052-1054, 2017.
doi:10.1049/el.2017.1605

29. Deng, P. H., R. C. Liu, W. D. Lin, and W. Lo, "Design of a microstrip low-pass-bandpass diplexer using direct-feed coupled-resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 254-256, 2017.
doi:10.1109/LMWC.2017.2661971

30. Bui, D. H. N., T. P. Vuong, B. Allard, J. Verdier, and P. Benech, "Compact low-loss microstrip diplexer for RF energy harvesting," Electronic Letters, Vol. 53, No. 8, 552-554, 2017.
doi:10.1049/el.2017.0022

31. Yan, J. M., H. Y. Zhou, and L. Z. Cao, "Compact diplexer using microstrip half and quarter wavelength resonators," Electronic Letters, Vol. 52, No. 19, 1613-1615, 2016.
doi:10.1049/el.2016.2127

32. Xiao, J. K., M. Zhu, Y. Li, L. Tian, and J. G. Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, 2015.
doi:10.1109/LMWC.2015.2495194

33. Chen, C. F., C. Y. Lin, B. H. T. Seng, and S. F. Chang, "High-isolation and high-rejection microstrip diplexer with independently controllable transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 12, 851-853, 2014.
doi:10.1109/LMWC.2014.2361684

34. Guan, X., F. Yang, H. Liu, and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 6, 385-387, 2014.
doi:10.1109/LMWC.2014.2313591

35. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2016.

36. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," 19th Iranian Conference on Electrical Engineering, 2011.

37. Keshavarz, R. and N. Shariati, "Low profile metamaterial band-pass filter loaded with 4-turn complementary spiral resonator for WPT applications," 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2020.

38. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," 33rd URSI General Assembly and Scientific Symposium, 2020.

39. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarzt, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications, Vol. 111, 1-5, 2019.

40. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 12, 2099-2109, 1996.
doi:10.1109/22.543968

41. SMS 7630-079LF Schottky diode datasheet, , Skyworks Solutions, 2018.