Vol. 109

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-05

Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications

By Geriki Polaiah, Krishnamoorthy Kandasamy, and Muralidhar Kulkarni
Progress In Electromagnetics Research C, Vol. 109, 169-186, 2021
doi:10.2528/PIERC20112802

Abstract

This paper proposes a new integration of compact ultra-wideband (UWB) slotted monopole antenna with a diplexer and rectifier for simultaneous energy harvesting and data communication applications. The antenna is composed of four symmetrical circularly slotted patches, a feed line, and a ground plane. A slotline open loop resonator based diplexer is implemented to separate the required signal from the antenna without extra matching circuit. A microwave rectifier based on the voltage doubler topology is designed for RF energy harvesting. The prototypes of the proposed antenna, diplexer, and rectifier are fabricated, measured, and compared with the simulation results. The measurement results show that the fractional impedance bandwidth of proposed UWB antenna reaches 149.7% (2.1GHz-14.6 GHz); the diplexer minimum insertion losses (|S21|, |S31|) are 1.37 dB and 1.42 dB at passband frequencies; the output isolation (|S23|) is better than 30 dB from 1 GHz to 5 GHz; and the peak RF-DC conversion efficiency of the rectifier is 32.8% at an input power of -5 dBm. The overall performance of the antenna with a diplexer and rectifier is also studied, and it is found that the proposed new configuration is suitable for simultaneous microwave energy harvesting and data communication applications.

Citation


Geriki Polaiah, Krishnamoorthy Kandasamy, and Muralidhar Kulkarni, "Compact UWB Slotted Monopole Antenna with Diplexer for Simultaneous Microwave Energy Harvesting and Data Communication Applications," Progress In Electromagnetics Research C, Vol. 109, 169-186, 2021.
doi:10.2528/PIERC20112802
http://www.jpier.org/PIERC/pier.php?paper=20112802

References


    1. Krikidis, I., T. Stelios, S. Nikolaou, G. Zheng, D. W. Kwan, and R. Schober, "Simultaneous wireless information and power transfer in modern communication systems," IEEE Communications Magazine, Vol. 52, 104-110, 2014.
    doi:10.1109/MCOM.2014.6957150

    2. Shinohara, N., Wireless Power Transfer via Radio Waves, Wiley, Hoboken, 2014.

    3. Sun, H. and W. Geyi, "A new rectenna with all polarization receiving capability for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 814-817, 2016.
    doi:10.1109/LAWP.2015.2476345

    4. Awais, Q., Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, "A compact rectenna system with high conversion efficiency for wireless energy harvesting," IEEE Access, Vol. 6, 35857-35866, 2018.
    doi:10.1109/ACCESS.2018.2848907

    5. Lin, W., R. W. Ziolkowski, and J. Huang, "Electrically small low-profile, highly efficient Huygens dipole rectennas for wirelessly powering internet of things devices," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3670-3679, 2019.
    doi:10.1109/TAP.2019.2902713

    6. Wang, M., Y. Fan, L. Yang, Y. Li, J. Feng, and Y. Shi, "Compact dual band rectenna for RF energy harvest based on a tree like antenna," IET Microwaves Antennas and Propagation, Vol. 13, No. 9, 1350-1357, 2019.
    doi:10.1049/iet-map.2018.5704

    7. Li, X., L. Yang, and L. Huang, "Novel design of 2.45 GHz rectenna element and array for wireless power transmission," IEEE Access, Vol. 7, 28356-28362, 2019.
    doi:10.1109/ACCESS.2019.2900329

    8. Hu, Y. Y., S. Sun, and H. Xu, "Compact collinear quasi Yagi antenna array for wireless energy harvesting," IEEE Access, Vol. 8, 35308-35317, 2020.
    doi:10.1109/ACCESS.2020.2974815

    9. Sun, H., H. He, and J. Huang, "Polarization insensitive rectenna arrays with different power combining strategies," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 492-496, 2020.
    doi:10.1109/LAWP.2020.2968616

    10. Takabayashi, N., N. Shinohara, T. Mitani, M. Furukawa, and T. Fujiwara, "Rectification improvement with flat topped beams on 2.45 GHz rectenna arrays," IEEE Transations on Microwave Theory and Techniques, Vol. 68, No. 3, 1151-1163, 2020.
    doi:10.1109/TMTT.2019.2951098

    11. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "A dual band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
    doi:10.1109/LAWP.2013.2272873

    12. Nie, M. J., X. X. Yang, G. N. Tan, and B. Han, "A compact 2.45 GHz broadband rectenna using grounded coplanar waveguide," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 986-989, 2015.
    doi:10.1109/LAWP.2015.2388789

    13. Song, C., Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, "A high efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3486-3495, 2015.
    doi:10.1109/TAP.2015.2431719

    14. Song, C., Y. Huang, P. Carter, J. Zhou, S. D. Joseph, and G. Li, "Novel compact and broadband frequency selectable rectennas for a wide input power and load impedance range," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3306-3316, 2018.
    doi:10.1109/TAP.2018.2826568

    15. Shi, Y., Y. Fan, Y. Li, L. Yang, and M. Wang, "An efficient broadband slotted rectenna for wireless power transfer at LTE band," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 814-822, 2019.
    doi:10.1109/TAP.2018.2882632

    16. Shi, Y., J. Jing, Y. Fan, L. Yang, J. Pang, and M. Wang, "Efficient RF energy harvest with a novel broadband Vivaldi rectenna," Microwave and Optical Technology Letters, Vol. 60, 2420-2425, 2018.

    17. Lee, C. H. and Y. H. Chang, "Design of a broadband circularly polarized rectenna for microwave power transmission," Microwave and Optical Technology Letters, Vol. 57, 702-706, 2014.

    18. Lu, P., K. M. Huang, Y. Yang, F. Cheng, and L. Wu, "Frequency reconfigurable rectenna with an adaptive matching stub for microwave power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 956-960, 2019.
    doi:10.1109/LAWP.2019.2906671

    19. Lu, P., C. Song, and K. M. Huang, "A compact rectenna design with wide input power range for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 35, No. 7, 6705-6710, 2020.
    doi:10.1109/TPEL.2019.2963422

    20. Yang, X. X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Q. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
    doi:10.1109/TAP.2013.2244550

    21. Zhu, G. L., J. X. Du, X. X. Yang, Y. G. Zhou, and S. Gao, "Dual-polarized communication rectenna array for simultaneous wireless information and power transmission," IEEE Access, Vol. 7, 141978-141986, 2019.
    doi:10.1109/ACCESS.2019.2943611

    22. Lin, W. and R. W. Ziolkowski, "Electrically small Huygens antenna-based fully integrated wireless power transfer and communication system," IEEE Access, Vol. 7, 39762-39769, 2019.
    doi:10.1109/ACCESS.2019.2903545

    23. Li, X. T., F. Cheng, P. Lu, and K. Huang, "High isolation diplexer using stub-loaded resonators," Electronic Letters, Vol. 55, No. 14, 800-801, 2019.
    doi:10.1049/el.2019.1201

    24. Zhang, Z. C., S. W. Wong, J. Y. Lin, H. Liu, L. Zhu, and Y. He, "Design of multistate diplexers on uniform and stepped-impedance stub-loaded resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1452-1460, 2019.
    doi:10.1109/TMTT.2019.2893656

    25. Wong, S. W., B. L. Zheng, J. Y. Lin, Z. C. Zhang, Y. Yang, L. Zhu, and Y. He, "Design of three-state diplexer using a planar triple-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 9, 4040-4046, 2018.
    doi:10.1109/TMTT.2018.2842791

    26. Xiao, J. K., Y. Li, and J. G. Ma, "Compact and high isolated triangular split-ring diplexer," Electronic Letters, Vol. 54, No. 10, 661-663, 2018.
    doi:10.1049/el.2018.0523

    27. Xiao, J. K., M. Zhang, and J. G. Ma, "A compact and high-isolated multi resonator-coupled diplexer," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 11, 999-1001, 2018.
    doi:10.1109/LMWC.2018.2873214

    28. Chen, X., X. Yu, and S. Sun, "Design of high-performance microstrip diplexers with stub-loaded parallel-coupled lines," Electronic Letters, Vol. 53, No. 15, 1052-1054, 2017.
    doi:10.1049/el.2017.1605

    29. Deng, P. H., R. C. Liu, W. D. Lin, and W. Lo, "Design of a microstrip low-pass-bandpass diplexer using direct-feed coupled-resonator filter," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 254-256, 2017.
    doi:10.1109/LMWC.2017.2661971

    30. Bui, D. H. N., T. P. Vuong, B. Allard, J. Verdier, and P. Benech, "Compact low-loss microstrip diplexer for RF energy harvesting," Electronic Letters, Vol. 53, No. 8, 552-554, 2017.
    doi:10.1049/el.2017.0022

    31. Yan, J. M., H. Y. Zhou, and L. Z. Cao, "Compact diplexer using microstrip half and quarter wavelength resonators," Electronic Letters, Vol. 52, No. 19, 1613-1615, 2016.
    doi:10.1049/el.2016.2127

    32. Xiao, J. K., M. Zhu, Y. Li, L. Tian, and J. G. Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, 2015.
    doi:10.1109/LMWC.2015.2495194

    33. Chen, C. F., C. Y. Lin, B. H. T. Seng, and S. F. Chang, "High-isolation and high-rejection microstrip diplexer with independently controllable transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 12, 851-853, 2014.
    doi:10.1109/LMWC.2014.2361684

    34. Guan, X., F. Yang, H. Liu, and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 6, 385-387, 2014.
    doi:10.1109/LMWC.2014.2313591

    35. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2016.

    36. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," 19th Iranian Conference on Electrical Engineering, 2011.

    37. Keshavarz, R. and N. Shariati, "Low profile metamaterial band-pass filter loaded with 4-turn complementary spiral resonator for WPT applications," 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2020.

    38. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," 33rd URSI General Assembly and Scientific Symposium, 2020.

    39. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarzt, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," International Journal of Electronics and Communications, Vol. 111, 1-5, 2019.

    40. Hong, J. S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 12, 2099-2109, 1996.
    doi:10.1109/22.543968

    41. SMS 7630-079LF Schottky diode datasheet, , Skyworks Solutions, 2018.