Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-07

Tri-Band Defected Ground Plane Based Planar Monopole Antenna for Wi-Fi/WiMAX /WLAN Applications

By Aneri Pandya, Trushit K. Upadhyaya, and Killol Pandya
Progress In Electromagnetics Research C, Vol. 108, 127-136, 2021
doi:10.2528/PIERC20120702

Abstract

Wireless technology plays a vital role in data transfer. There is an acute need of smart wireless devices which could respond effectively for specific applications. This paper presents a defected ground plane based planar antenna. The presented antenna has the potential to operate at 2.47 GHz, 3.55 GHz, and 5.55 GHz frequencies with gains of 3.88 dBi, 3.87 dBi, and 3.83 dBi having impedance bandwidths of 14.61%, 5.42%, and 5.40% respectively. Flame Retardant 4 (FR4) is employed as a substrate. The agreement between simulated and measured results points out the utilization of the presented structure for Wi-Fi/WiMAX/WLAN applications.

Citation


Aneri Pandya, Trushit K. Upadhyaya, and Killol Pandya, "Tri-Band Defected Ground Plane Based Planar Monopole Antenna for Wi-Fi/WiMAX /WLAN Applications," Progress In Electromagnetics Research C, Vol. 108, 127-136, 2021.
doi:10.2528/PIERC20120702
http://www.jpier.org/PIERC/pier.php?paper=20120702

References


    1. Ntaikos, D. K., N. K. Bourgis, and T. V. Yioultsis, "Metamaterial-based electrically small multiband planar monopole antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 963-966, 2011.
    doi:10.1109/LAWP.2011.2167309

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
    doi:10.1117/1.OE.53.10.107104

    4. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229, 2016.
    doi:10.1017/S175907871400138X

    5. Patel, U. P. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
    doi:10.2528/PIERM18121502

    6. Islam, M. M., M. T. Islam, and M. R. Faruque, "Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands," Scientific World Journal, Vol. 2013, 378420, 2013.

    7. Sarkar, D., K. Saurav, and K. V. Srivastava, "Multi-band microstrip-fed slot antenna loaded with split-ring resonator," Electron. Lett., Vol. 50, 1498-1500, 2014.
    doi:10.1049/el.2014.2625

    8. Wan, Y.-T., D. Yu, F.-S. Zhang, and F. Zhang, "Miniature multi-band monopole antenna using spiral ring resonators for radiation pattern characteristics improvement," Electron. Lett., Vol. 49, 382-384, 2013.
    doi:10.1049/el.2012.3980

    9. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, 636-638, 2013.
    doi:10.1049/el.2013.0357

    10. Sim, C. Y. D., H. D. Chen, K. C. Chiu, and C. H. Chao, "Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications," IET Microw. Antenna Propag., Vol. 6, No. 14, 1529-1535, 2012.
    doi:10.1049/iet-map.2012.0174

    11. Patel, R. H., A. H. Desai, and T. Upadhyaya, "Design of H-shape X-band application electrically small antenna," International Journal of Electrical Electronics and Data Communication (IJEEDC), Vol. 3, 1-4, 2015.

    12. Pan, C. Y., T. S. Horng, W. S. Chen, and C. H. Huang, "Dual wideband printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 149-151, 2007.
    doi:10.1109/LAWP.2007.891957

    13. Xu, H. X., G. M. Wang, and M. Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
    doi:10.2528/PIER12081008

    14. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branchcircuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
    doi:10.2528/PIER12122409

    15. Hamad, E. K. I. and A. Abdelaziz, "Performance of a metamaterial-based 1 × 2 microstrip patch antenna array for wireless communications examined by characteristic mode analysis," Radioengineering, Vol. 28, No. 4, 681, 2019.
    doi:10.13164/re.2019.0680

    16. Xu, H. X., G. M. Wang, M. Q. Qi, and T. Cai, "Compact fractal left-handed structures for improved cross-polarization radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 546-554, 2014.
    doi:10.1109/TAP.2013.2290308

    17. Jiangpeng, L., Y. Cheng, Y. Nie, and R. Gong, "Metamaterial extends microstrip antenna," Microwaves RF, Vol. 52, 69-73, 2013.

    18. Xu, H. X., et al., "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
    doi:10.1109/TAP.2012.2215298

    19. Hamad, E. K. I. and A. Abdelaziz, "Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes," Journal of Electrical Engineering, Vol. 70, No. 3, 187-197, 2019.
    doi:10.2478/jee-2019-0027

    20. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-195109, 2002.
    doi:10.1103/PhysRevB.65.195104

    21. Kaur, H. and A. Sharma, Microstrip Patch Antennas Using Metamaterials: A Review, 2017.

    22. Singh, H. P. and R. Y. Kumar, "Design and simulation of rectangular microstrip patch antenna loaded with metamaterial structure," Electric Electron Tech. Open Acc. J., Vol. 1, No. 2, 00012, 2017.

    23. Gangwar, K., Paras, R. P. S. Gangwar, and R. Verma, "Multiband microstrip patch antenna using metamaterial structure," 2nd International Conference on Emerging Trends in Technology and Applied Sciences (ICETTAS’15), 2018.

    24. Li, L.-W., Y.-N. Li, T.-S., Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Applied Physics Letters, Vol. 96, No. 6, 164101, April 2010.

    25. Islam, M. R., A. A. Alsaleh Adel, A. W. N. Mimi, M. Sarah Yasmin, and F. A. M. Norun, "Design of dual band microstrip patch antenna using metamaterial," IOP Conference Series: Materials Science and Engineering, Vol. 260, No. 1, 012037, IOP Publishing, 2017.
    doi:10.1088/1757-899X/1067/1/012037

    26. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with lefthanded metamaterials," IEEE Trans. Antennas Propag., Vol. 57, 331-338, 2009.
    doi:10.1109/TAP.2008.2011230

    27. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration," IEEE Trans. Antennas Propag., Vol. 54, 2283-2291, 2006.
    doi:10.1109/TAP.2006.879199

    28. Aminu-Baba, M., M. K. A. Rahim, F. Zubir, A. Y. Iliyasu, M. F. M. Yusoff, K. I. Jahun, and O. Ayop, "Compact patch MIMO antenna with low mutual coupling for WLAN applications," ELEKTRIKA — Journal of Electrical Engineering, Vol. 18, No. 1, 43-46, 2019.
    doi:10.11113/elektrika.v18n1.146

    29. Shehata, G., M. Mohanna, and M. L. Rabeh, "Tri-band small monopole antenna based on SRR units," NRIAG Journal of Astronomy and Geophysics, Vol. 4, No. 2, 185-191, 2015.
    doi:10.1016/j.nrjag.2015.08.003

    30. Vahora, A. and K. Pandya, "Triple band dielectric resonator antenna array using power divider network technique for GPS navigation/bluetooth/satellite applications," International Journal of Microwave and Optical Technology, Vol. 15, 369-378, July 2020.

    31. Pimpalgaonkar, P. R., T. K. Upadhyaya, K. Pandya, M. R. Chaurasia, and B. T. Raval, "A review on dielectric resonator antenna," 1ST International Conference on Automation in industries (ICAI), 106-109, June 2016.

    32. Vahora, A. and K. Pandya, "Implementation of cylindrical dielectric resonator antenna array for Wi-Fi/wireless lan/satellite applications," Progress In Electromagnetics Research, Vol. 90, 157-166, March 2020.
    doi:10.2528/PIERM20011604

    33. Iizuka, H. and P. S. Hall, "Left-handed dipole antennas and their implementations," IEEE Trans. Antennas Propag., Vol. 55, 1246-1253, 2007.
    doi:10.1109/TAP.2007.895568

    34. Patel, A., Y. Kosta, N. Chhasatia, and K. Pandya, "Multiple band waveguide based microwave resonator," IEEE — International Conference on Advances in Engineering, Science and Management (ICAESM-2012), 84-87, IEEE, March 2012.

    35. Pimpalgaonkar, P. R., M. R. Chaurasia, B. T. Raval, T. K. Upadhyaya, and K. Pandya, "Design of rectangular and hemispherical dielectric resonator antenna," 2016 International Conference on Communication and Signal Processing (ICCSP), 1430-1433, IEEE, 2016.
    doi:10.1109/ICCSP.2016.7754392

    36. Vahora, A. and K. Pandya, "Microstrip feed two elements pentagon dielectric resonator antenna array," 2019 International Conference on Innovative Trends and Advances in Engineering and Technology (ICITAET), 22-25, IEEE, 2019.
    doi:10.1109/ICITAET47105.2019.9170140

    37. Patel, R. and T. Upadhyaya, "An electrically small antenna for nearfield biomedical applications," Microwave and Optical Technology Letters, Vol. 60, No. 3, 556-561, 2018.
    doi:10.1002/mop.31007