Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-14
Research on Three-Dimensional Imaging Method Using Tensor for Electrical Impedance Tomography (EIT)
By
Progress In Electromagnetics Research C, Vol. 109, 243-256, 2021
Abstract
Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Many algorithms have been proposed for two-dimensional EIT reconstruction. However, since the human thorax has the characteristic of three-dimensions, EIT is a truly three-dimensional imaging problem. In this paper, we propose a three-dimensional imaging method using tensors for EIT. A tensor EIT model is established by EIT data and the Tucker decomposition is used to obtain the tensor basis. The tensor basis can form a new way to reconstruct image in three-dimensional space. Experiment results revealed that the data structural information of image can be fully used by the tensor method. A comparison of the peak signal to noise ratio (PSNR) shows that the newly proposed method performs better than other methods, i.e. the Dynamic Group Sparse TV algorithm and Tikhonov algorithm. The newly proposed method is closer to the ground truth, thus it can more accurately reflect the state of a lung than two-dimensional EIT. Finally, the EIT experiment is carried out to evaluate the proposed method. The experimental results show that the accuracy of reconstruction based on the new method is efficiently improved.
Citation
Qi Wang Lei Yu Xiuyan Li Xiaojie Duan Xiaojie Li Huimei Ma Jixuan Lu Jianming Wang Huaxiang Wang , "Research on Three-Dimensional Imaging Method Using Tensor for Electrical Impedance Tomography (EIT)," Progress In Electromagnetics Research C, Vol. 109, 243-256, 2021.
doi:10.2528/PIERC20122104
http://www.jpier.org/PIERC/pier.php?paper=20122104
References

1. Djajaputra, D., "Electrical impedance tomography: Methods, history and applications," Medical Physics, Vol. 32, No. 8, 2731-2731, 2005.
doi:10.1118/1.1995712

2. Yu, Y., J. Jin, F. Liu, and S. Crozier, "Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform," PLoS ONE, Vol. 9, No. 6, e98441, 2014.
doi:10.1371/journal.pone.0098441

3. Fu, H.-S. and B. Han, "Tikhonov regularization-homotopy method for electrical impedance tomography," Journal of Natural Science of Heilongjiang University, Vol. 3, 319-323, 2011.

4. Wang, Q., et al., "Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography," Review of Scientific Instruments, Vol. 83, No. 10, 104707, 2012.
doi:10.1063/1.4760253

5. Zhao, B., H. X. Wang, X. Y. Chen, X. L. Shi, and W. Q. Yang, "Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method," Measurement Science and Technology, Vol. 18, No. 11, 3373-3383, 2007.
doi:10.1088/0957-0233/18/11/017

6. Morucii, J., M. Granie, M. Lei, M. Chebett, and W. Dai, "Direct sensitivity matrix in electrical impedance imaging," International Conference of the IEEE Engineering in Medicine and Biology Society, 538-539, 1994.

7. Barber, D. C., "A sensitivity method for electrical impedance tomography," Clinicial Phyiscs and Physiological Measurement, Vol. 10, No. 4, 368-371, 1989.
doi:10.1088/0143-0815/10/4/011

8. Semenov, S. Y., et al., "Iterative algorithm for 3D EIT," Engineering in Medicine and Biology Society, 10, 1997.

9. Wang, M., "Inverse solutions for electrical impedance tomography based on conjugate gradients methods," Measurement Science and Technology, Vol. 13, 101-117, 2002.
doi:10.1088/0957-0233/13/1/314

10. Borsic, A., et al., "In vivo impedance imaging with total variation regularization," IEEE Transactions on Medical Imaging, Vol. 29, No. 1, 44-53, 2010.
doi:10.1109/TMI.2009.2022540

11. Lukaschewitsch, M., P. Maass, and M. Pidcock, "Tikhonov regularization for electrical impedance tomography on unbounded domains," Inverse Problems, Vol. 19, 585-610, 2003.
doi:10.1088/0266-5611/19/3/308

12. Fan, W., et al., "An image reconstruction algorithm based on preconditioned LSQR for 3D EIT," IEEE International Instrumentation and Measurement Technology Conference, 10, 2011.

13. Jacobsen, M., P. C. Hansen, and M. A. Saunders, "Subspace preconditioned LSQR for discrete ill-posed problems," BIT Numerical Mathematics, Vol. 43, 975-989, 2003.
doi:10.1023/B:BITN.0000014547.88978.05

14. Wang, H. X., L. Tang, and Y. Yan, "Total variation regularization algorithm for electrical capacitance tomography," Chinese Journal of Scientific Instrument, Vol. 28, No. 11, 2014-2018, 2007.

15. Chambelle, A., et al., "An algorithm for total variation minimization and applications," Journal of Mathematical Imaging and Vision, Vol. 20, 89-97, 2004.

16. Yang, Y., et al., "Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation," IEEE Sensors Journal, Vol. 17, No. 17, 5589-5598, 2017.
doi:10.1109/JSEN.2017.2728179

17. Hemming, B., A. Fagerlund, and A. Lassila, "Linearized solution to electrical impedance tomography based on the schur conjugate gradient method," Measurement Science & Technology, Vol. 18, No. 11, 3373, 2007.
doi:10.1088/0957-0233/18/11/017

18. Li, X., et al., "Electrical-impedance-tomography imaging based on a new three-dimensional thorax model for assessing the extent of lung injury," AIP Advances, Vol. 10, 9000000, 2019.

19. Kolda, T. and B. Bader, "Tensor decompositions and applications," SIAM Rev., Vol. 51, No. 3, 455-500, 2009.
doi:10.1137/07070111X

20. De Lathauwer, L., B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., Vol. 21, 1253-1278, 2000.
doi:10.1137/S0895479896305696

21. Wang, Q., et al., "Patch-based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 257-269, 2017.
doi:10.1108/SR-07-2016-0126

22. Caiafa, C. F. and A. Cichocki, "Fast and stable recovery of approximatelly low multilinear rank tensors from multi-way compressive measurements," IEEE Int. Conf. Acoust. Speech, Signal., 6790-6794, 2014.

23. Caiafa, C. F. and A. Cichocki, "Multidimensional compressed sensing and their applications," Wiley Interdisciplinary Rev.: Data Mining Knowledge Discovery, Vol. 3, No. 6, 355-380, 2013.
doi:10.1002/widm.1108

24. Hansen, P. C., "Rank-deficient and discrete Ill-posed problems," American Mathematical Monthly, Vol. 10, No. 3, 215-247, 1998.

25. Caiafa, C. F. and A. Cichocki, "Stable, robust, and super fast reconstruction of tensors using multi-way projections," IEEE Transactions on Signal Processing, Vol. 63, No. 3, 780-793, 2015.
doi:10.1109/TSP.2014.2385040

26. Schullcke, B., Z. S. Krueger, and B. Gong, "Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: A simulation study," J. Clin. Monit. Comput., Vol. 32, No. 4, 753-761, 2018.
doi:10.1007/s10877-017-0069-0

27. Schullcke, B., Z. S. Krueger, and B. Gong, "A simulation study on the ventilation inhomogeneity measured with electrical impedance tomography," IFAC Papers on Line, Vol. 50, 8781-8785, 2017.
doi:10.1016/j.ifacol.2017.08.1737

28. Wang, Q., et al., "Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography," Review of Scientific Instruments, Vol. 83, No. 10, 104707, 2012.
doi:10.1063/1.4760253