Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-07
System of Material Objects in Electrodynamic Volumes
By
Progress In Electromagnetics Research C, Vol. 109, 205-216, 2021
Abstract
In general, the problem of the excitation (radiation, scattering) of electromagnetic fields by a system of finite-dimensional material objects in arbitrary electrodynamic volumes is formulated. On the basis of the impedance concept, the problem is reduced to solving two-dimensional integral equations for electric surface currents on material objects. A physically correct transition from the obtained integral equations to a system of one-dimensional equations for currents on electrically thin impedance vibrators (monopoles) with electrophysical and geometric parameters that can be irregular along their length is made. As an example, a system of two monopoles with a variable surface impedance located in a rectangular waveguide is considered. The problem was solved by the generalized method of induced electromotive forces (EMF). A distinctive feature of this method is that the current distribution functions found by the asymptotic averaging method are used to solve integral equations for currents. The numerical and experimental results concerning electrodynamic characteristics of the structure under consideration are presented.
Citation
Mikhail Nesterenko Viktor A. Katrich Sergey L. Berdnik Victor I. Kijko , "System of Material Objects in Electrodynamic Volumes," Progress In Electromagnetics Research C, Vol. 109, 205-216, 2021.
doi:10.2528/PIERC20122301
http://www.jpier.org/PIERC/pier.php?paper=20122301
References

1. Al-Hakkak, M. J., "Experimental investigation of the input-impedance characteristics of an antenna in a rectangular waveguide," Electronics Letters, Vol. 5, 513-514, 1969.
doi:10.1049/el:19690385

2. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microwave Theory Tech., Vol. 19, 295-308, 1971.
doi:10.1109/TMTT.1971.1127503

3. Eisenhart, R. L. and P. J. Khan, "Theoretical and experimental analysis of a waveguide mounting structure," IEEE Trans. Microwave Theory Tech., Vol. 19, 706-719, 1971.
doi:10.1109/TMTT.1971.1127612

4. Petlenko, V. A. and M. V. Nesterenko, "Current distribution and resonance of rod conductors in a rectangular waveguide," Radiophysics Quantum Electronics, Vol. 27, 236-241, 1984.
doi:10.1007/BF01035044

5. Lopuch, S. L. and T. K. Ishii, "Field distribution of two conducting posts in a waveguide," IEEE Trans. Microwave Theory Tech., Vol. 32, 29-33, 1984.
doi:10.1109/TMTT.1984.1132607

6. Williamson, A. G., "Variable-length cylindrical post in a rectangular waveguide," IEE Proceedings, Vol. 133, Pt. H, 1-9, 1986.
doi:10.1049/ip-d.1986.0001

7. Hashemi-Yeganeh, S. and C. R. Birtcher, "Numerical and experimental studies of current distributions on thin metallic posts inside rectangular waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, 1063-1068, 1994.
doi:10.1109/22.293577

8. Roelvink, J. and A. G. Williamson, "Reactance of hollow, solid, and hemispherical-cap cylindricalposts in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, 3156-3160, 2005.
doi:10.1109/TMTT.2005.855356

9. Kirilenko, A., D. Kulik, L. Mospan, and L. Rud, "Two notched band two post waveguide," Proc. of 12th Int. Math. Methods Electromagn. Theory Conf., 164-166, 2008.

10. Tomassoni, C. and R. Sorrentino, "A new class pseudoelliptic waveguide filters using dual-post resonators," IEEE Trans. Microwave Theory Tech., Vol. 61, 2332-2339, 2013.
doi:10.1109/TMTT.2013.2258171

11. Cassedy, E. S. and J. Fainberg, "Back scattering cross sections of cylindrical wires of finite conductivity," IEEE Trans. Antennas Propagat., Vol. 8, 1-7, 1960.
doi:10.1109/TAP.1960.1144803

12. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas and Propagat., Vol. 14, 524-534, 1966.
doi:10.1109/TAP.1966.1138733

13. Lamensdorf, D., "An experimental investigation of dielectric-coated antennas," IEEE Trans. Antennas Propagat., Vol. 15, 767-771, 1967.
doi:10.1109/TAP.1967.1139049

14. Inagaki, N., O. Kukino, and T. Sekiguchi, "Integral equation analysis of cylindrical antennas characterized by arbitrary surface impedance," IEICE Trans. Commun., Vol. 55-B, 683-690, 1972.

15. Bretones, A. R., R. G. Martın, and I. S. Garcıa, "Time-domain analysis of magnetic-coated wire antennas," IEEE Trans. Antennas Propagat., Vol. 43, 591-596, 1995.
doi:10.1109/8.387174

16. Nesterenko, M. V., "The electromagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
doi:10.1615/TelecomRadEng.v61.i10.40

17. Hanson, G. W., "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propagat. Mag., Vol. 50, No. 3, 66-77, 2008.
doi:10.1109/MAP.2008.4563565

18. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.
doi:10.1007/978-1-4419-7850-9

19. Lewin, L., Theory of Waveguides. Techniques for the Solution of Waveguide Problems, Newnes-Butterworths, London, 1975.

20. Gorobets, N. N., M. V. Nesterenko, V. A. Petlenko, and N. A. Khizhnyak, "Thin impedance vibrator in a rectangular waveguide," Radio Eng., Vol. 39, 65-68, 1984.

21. Gorobets, N. N., M. V. Nesterenko, and V. A. Petlenko, "Resonance characteristics of thin impedance dipoles in a cutoff rectangular waveguide," Telecommunications Radio Eng., Vol. 45, No. 4, 110-112, 1990.

22. Penkin, D. Yu, V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko, V. M. Dakhov, and S. L. Berdnik, "Electrodynamic characteristics of a radial impedance vibrator on a perfect conduction sphere," Progress In Electromagnetics Research B, Vol. 62, 137-151, 2015.
doi:10.2528/PIERB14120102

23. Penkin, Yu. M., V. A. Katrich, M. V. Nesterenko, S. L. Berdnik, and V. M. Dakhov, Electromagnetic Fields Excited in Volumes with Spherical Boundaries, Springer Nature Swizerland AG, Cham, Swizerland, 2019.
doi:10.1007/978-3-319-97819-2

24. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propag., Vol. 13, 369-373, 1965.
doi:10.1109/TAP.1965.1138429

25. Shen, L.-C., "An experimental study of the antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propagat., Vol. 15, 606-611, 1967.
doi:10.1109/TAP.1967.1139025

26. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas Propagat., Vol. 16, 176-179, 1968.
doi:10.1109/TAP.1968.1139146

27. Rao, B. L. J., J. E. Ferris, and W. E. Zimmerman, "Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading," IEEE Trans. Antennas Propagat., Vol. 17, 145-151, 1969.
doi:10.1109/TAP.1969.1139408

28. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen," Progress In Electromagnetics Research B, Vol. 63, 275-288, 2015.
doi:10.2528/PIERB15043003

29. Garb, H. L., P. Sh. Friedberg, and I. M. Yakover, "Diffraction of an H10-wave on a thin resistive film with a stepwise change of surface impedance in a rectangular waveguide," Radioengineering Electronics, Vol. 30, 41-48, 1985 (in Russian).

30. Miek, D., P. Boe, F. Kamrath, and M. Hoft, "Techniques for the generation of multiple additional transmission zeros in H-plane waveguide filters," International Journal of Microwave and Wireless Technologies, 723-732, 2020.
doi:10.1017/S1759078720000811

31. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova dumka, Kiev, 1986 (in Russian).