Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-13
Design and Analysis of a Compact High Gain Wideband Monopole Patch Antenna for Future Handheld Gadgets
By
Progress In Electromagnetics Research C, Vol. 109, 227-241, 2021
Abstract
In this article, a compact super wideband (SWB) monopole antenna with a wide-frequency is designed and analyzed for future handheld gadgets. The designed antenna is made by etching four slots on a round cornered rectangular patch which are connected through a 50-Ω triangular tapered microstrip transmission feedline (TTMTF) for broadband impedance matching. A triangular slot is etched on the semicircular partial ground plane, which helps to shift the lower frequency edge of 1.07 GHz to 1 GHz. The experimental results show that the proposed antenna operates over a wide frequency range of 1-30 GHz with a reflection coefficient of less than -10 dB. The antenna acquires a compact dimension of 25 x 16 x 0.787 mm3. Further, an equivalent circuit method is used to analyze the proposed structure, and its outcome is compared with the simulated and experimental results. The peak gain of the designed antenna is about 5.5 dBi. The proposed antenna has low cross-polarization even at higher frequencies. Finally, the time domain analysis is also carried out to see the distortion between transmitting and receiving modes. The designed antenna can be used for various wireless applications such as NB-IoT, GPS, Wi-BRO, ISM band, IRNSS, WiMAX, X-band, Ku-band, and K-band.
Citation
Abhishek Kumar Chaudhary Murli Manohar , "Design and Analysis of a Compact High Gain Wideband Monopole Patch Antenna for Future Handheld Gadgets," Progress In Electromagnetics Research C, Vol. 109, 227-241, 2021.
doi:10.2528/PIERC20122403
http://www.jpier.org/PIERC/pier.php?paper=20122403
References

1. Anguera, J., et al., "Advances in antenna technology for wireless handheld devices," International Journal on Antennas and Propagation, Vol. 2013, 2013.
doi:10.1155/2013/838364

2. Wong, K. L., Planar Antennas for Wireless Communications, Wiley Inter-Science, 2003.

3. Rumsey, V., Frequency Independent Antennas, Academic Press, New York, 1966.

4. Chen, D. and C. Q. Cheng, "A novel compact Ultra-Wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306

5. Haq, M. A. U., S. Koziel, and Q. S. Cheng, "Miniaturisation of wideband antennas by means of feed line topology alterations," IET Microwaves, Antennas & Propagation, Vol. 12, No. 13, 2128-2134, 2018.
doi:10.1049/iet-map.2018.5197

6. Dong, Y., W. Hong, and L. Liu, "Performance analysis of a printed super-wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009.
doi:10.1002/mop.24222

7. Singhal, S. and A. K. Singh, "Elliptical monopole based super wideband fractal antenna," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1324-1328, 2020.
doi:10.1002/mop.32143

8. Trinh-van, S., G. Kwon, and K. C. Hwang, "Planar super-wideband loop antenna with asymmetric coplanar strip feed," Electronics Letters, Vol. 52, No. 2, 96-98, 2015.
doi:10.1049/el.2015.2548

9. Omar, S. A., et al., "An array of M-SHAPED vivaldi antennas for UWB applications," Progress In Electromagnetics Research Letters, Vol. 68, 67-72, 2017.
doi:10.2528/PIERL17041506

10. Iqbal, A., O. A. Saraereh, and S. K. Jaiswal, "Maple leaf shaped UWB monopole antenna with dual band notch functionality," Progress In Electromagnetics Research C, Vol. 71, 169-175, 2017.
doi:10.2528/PIERC17010801

11. Iqbal, A., et al., "A compact UWB antenna with independently controllable notch bands," Sensors, Vol. 19, No. 6, 1411, 2019.
doi:10.3390/s19061411

12. Palaniswami, S. K., M. Kanagasabai, and S. A. Kumar, "Super wideband printed monopole antenna for ultra wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 133-141, 2017.
doi:10.1017/S1759078715000951

13. Oskouei, H. D. and A. Mirtaheri, "A monopole super wideband microstrip antenna with band-notch rejection," 2017 Progress In Electromagnetics Research Symposium — Fall (PIERS — FALL), 2019-2024, Singapore, Singapore, Nov. 19–22, 2017.

14. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, 2020.
doi:10.1002/mop.32117

15. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016.
doi:10.1049/iet-map.2016.0154

16. Samsuzzaman, M. and M. T. Islam, "A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, 2015.
doi:10.1002/mop.28872

17. Tahir, F. A. and A. H. Naqvi, "A compact hut-shaped printed antenna for super-wideband applications," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2645-2649, 2015.
doi:10.1002/mop.29413

18. Sharma, M., "Superwideband triple notch monopole antenna for multiple wireless applications," Wireless Personal Communications, Vol. 104, No. 1, 459-470, 2019.
doi:10.1007/s11277-018-6030-9

19. Rahman, M. N., et al., "Compact microstrip patch antenna proclaiming super wideband characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2563-2570, 2017.
doi:10.1002/mop.30770

20. Aziz, S. Z. and M. F. Jamlos, "Compact super wideband patch antenna design using diversities of reactive loaded technique," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2811-2814, 2016.
doi:10.1002/mop.30152

21. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, 2014.
doi:10.1049/iet-map.2013.0094

22. Risco, S., et al., "Coupled monopole antenna design for multiband handset devices," Microwave and Optical Technology Letters, Vol. 52, No. 2, 359-364, 2010.
doi:10.1002/mop.24893

23. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5GHz dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368

24. Zhu, X., et al., "A novel definition and measurement method of group delay and its application," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 1, 229-233, 2008.

25. Mussina, R., et al., "A rapid accurate technique to calculate the group delay, dispersion and dispersion slope of arbitrary radial refractive index profile weakly-guiding optical fibers," Progress In Electromagnetics Research, Vol. 145, 93-113, 2014.
doi:10.2528/PIER13031203

26. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2212, 2011.
doi:10.1109/TAP.2011.2152322