Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-16

Analysis of a Nonlinear Magnetic Coupling Wireless Power Transfer System

By Meng Wang, Li Ren, Yanyan Shi, Weina Liu, and Hao Ran Wang
Progress In Electromagnetics Research C, Vol. 110, 15-26, 2021
doi:10.2528/PIERC20123106

Abstract

In near-field energy transmission, it has been proved that magnetic coupling wireless power transfer (MC-WPT) is a promising energy transmission method. Traditionally, the MC-WPT system is established based on a linear resonant circuit. Recently, it has been reported that nonlinear MC-WPT system shows more advantages. However, nonlinear characteristics of the nonlinear MC-WPT system are not fully recovered. In this paper, a nonlinear MC-WPT system which can be described by Duffing equation is presented. The mathematical model of the equivalent circuit is developed. The related nonlinear characteristics under the impact of driving force are investigated. It is found that the driving force has a direct impact on the system performance. The operation of the nonlinear MC-WPT system varies from periodic sinusoidal state to periodic non-sinusoidal state even to chaotic state when the driving force increases. It should be mentioned that the chaotic state should be avoided. Generally, the MC-WPT system should be operated in periodic sinusoidal state which only covers a small range of driving force. For the system operated in periodic non-sinusoidal state, a waveform correcting circuit is designed. The simulated and experimental results show that the restriction of the driving force on the operation of the system is eliminated with a waveform correcting circuit added. It is possible for the nonlinear MC-WPT system to be operated in a much wider range.

Citation


Meng Wang, Li Ren, Yanyan Shi, Weina Liu, and Hao Ran Wang, "Analysis of a Nonlinear Magnetic Coupling Wireless Power Transfer System," Progress In Electromagnetics Research C, Vol. 110, 15-26, 2021.
doi:10.2528/PIERC20123106
http://www.jpier.org/PIERC/pier.php?paper=20123106

References


    1. Biswal, S. S., D. P. Kar, and S. Bhuyan, "Parameter trade-off between electric load, quality factor and coupling coefficient for performance enrichment of wireless power transfer system," Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020.
    doi:10.2528/PIERM20010902

    2. Huang, Y. C., C. H. Liu, Y. Xiao, and S. Y. Liu, "Separate power allocation and control method based on multiple power channels for wireless power transfer," IEEE Trans. Power Electron., Vol. 35, No. 9, 9046-9056, 2020.
    doi:10.1109/TPEL.2020.2973465

    3. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
    doi:10.2528/PIERL18032301

    4. Sahany, S., S. S. Biawal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research, Vol. 79, 187-197, 2019.
    doi:10.2528/PIERM18092610

    5. Wang, Q., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, and G. Monti, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
    doi:10.2528/PIER18102402

    6. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. Electromagn. Compat., Vol. 60, No. 6, 1865-1872, 2018.
    doi:10.1109/TEMC.2018.2790265

    7. Parise, M., L. Lombardi, F. Ferranti, and G. Antonini, "Magnetic coupling between coplanar filamentary coil antennas with uniform current," IEEE Trans. Electromagn. Compat., Vol. 62, No. 2, 622-626, 2020.
    doi:10.1109/TEMC.2019.2904516

    8. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Rev.: Energy Environ., Vol. 1, No. 3, 337-346, 2012.
    doi:10.1002/wene.43

    9. Ren, J. S., P. Hu, D. S. Yang, and D. Liu, "Tuning of mid-range wireless power transfer system based on delay-iteration method," IET Power Electronics, Vol. 9, No. 8, 1563-1570, 2016.
    doi:10.1049/iet-pel.2015.0291

    10. Jiwariyavej, V., T. Imura, and Y. Hori, "Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system," IEEE J. Emerging Sel. Topics Power Electron., Vol. 3, No. 1, 191-200, 2015.
    doi:10.1109/JESTPE.2014.2332056

    11. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. Ind. Electron., Vol. 56, No. 8, 3060-3068, 2009.
    doi:10.1109/TIE.2009.2023633

    12. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2017.

    13. Costanzo, A., et al., "Conditions for a load-independent operating regime in resonant inductive WPT," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1066-1076, 2017.
    doi:10.1109/TMTT.2017.2669987

    14. Hui, S. Y. R., W. X. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, 4500-4511, 2014.
    doi:10.1109/TPEL.2013.2249670

    15. Shin, J., S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 3, 1179-1192, 2014.
    doi:10.1109/TIE.2013.2258294

    16. Nguyen, D. H., "Electric vehicle — Wireless charging-discharging lane decentralized peer-to-peer energy trading," IEEE Access, Vol. 8, 179616-179625, 2020.
    doi:10.1109/ACCESS.2020.3027832

    17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
    doi:10.1109/ACCESS.2020.3036703

    17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
    doi:10.1109/ACCESS.2020.3036703

    18. Huang, L. Y., A. Murray, and B. W. Flynn, "Optimal design of a 3-coil wireless power transfer system for deep micro-implants," IEEE Access, Vol. 8, 193183-193201, 2020.
    doi:10.1109/ACCESS.2020.3031960

    19. Riehl, P., et al., "Wireless power systems for mobile devices supporting inductive and resonant operating modes," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 3, 780-790, Mar. 2015.
    doi:10.1109/TMTT.2015.2398413

    20. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 400-402, 2014.
    doi:10.1109/LAWP.2014.2307924

    21. De Miranda, C. M. and S. F. Pichorim, "A self-resonant two-coil wireless power transfer system using open bifilar coils," IEEE Trans. Circuits Syst., II, Exp. Briefs, Vol. 64, No. 6, 615-619, 2017.
    doi:10.1109/TCSII.2016.2595402

    22. Wang, S. M., Z. Y. Hu, C. C. Rong, X. Tao, C. H. Lu, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IEEE Antennas Wireless Propag. Lett., Vol. 12, No. 7, 1132-1139, 2018.

    23. Zhong, W. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-off keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
    doi:10.1109/TPEL.2017.2709341

    24. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
    doi:10.1109/TPEL.2014.2387835

    25. Lim, Y., H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 8, 4403-4413, 2014.
    doi:10.1109/TPEL.2013.2292596

    26. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019.

    27. Ricketts, D. S., M. Chabalko, and A. Hillenius, "Tri-loop impedance and frequency matching with high-Q resonators in wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 341-344, 2014.
    doi:10.1109/LAWP.2014.2299896

    28. Stein, A. L. F., P. A. Kyaw, and C. R. Sullivan, "Wireless power transfer utilizing a high-Q self-resonant structure," IEEE Trans. Power Electron., Vol. 34, No. 7, 6722-6735, 2019.
    doi:10.1109/TPEL.2018.2874878

    29. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU --- Int. J. Electron. Commun., Vol. 117, 2020.

    30. Chen, Y. F., W. X. Xiao, Z. P. Guan, B. Zhang, D. Y. Qiu, and M. Y. Wu, "Nonlinear modeling and harmonic analysis of magnetic resonant WPT system based on equivalent small parameter method," IEEE Trans. Ind. Electron., Vol. 66, No. 8, 6604-6612, 2019.
    doi:10.1109/TIE.2019.2896077

    31. Assawaworrarit, S., X. F. Yu, and S. H. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit," Nature, Vol. 546, No. 7658, 387-390, 2017.
    doi:10.1038/nature22404

    32. Abdelatty, O., X. Y. Wang, and A. Mortazawi, "Position-insensitive wireless power transfer based on nonlinear resonant circuits," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 9, 3844-3855, 2019.
    doi:10.1109/TMTT.2019.2904233

    33. Kovacic, I. and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behavior, Wiley, Hoboken, NJ, USA, 2011.
    doi:10.1002/9780470977859

    34. Wang, X. Y. and A. Mortazawi, "Bandwidth enhancement of RF resonators using duffing nonlinear resonance for wireless power applications," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3695-3702, 2016.
    doi:10.1109/TMTT.2016.2603984

    35. Vernizzi, G. J., S. Lenci, and G. R. Franzini, "A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales," Meccanica, Vol. 55, No. 12, 2423-2437, 2020.
    doi:10.1007/s11012-020-01247-6

    36. Gargour, C. S. and V. Ramachandran, "A simple design method for transitional Butterworth-Chebyshev filters," J. Instit. Electron. Radio Eng., Vol. 58, No. 6, 291-294, 1988.
    doi:10.1049/jiere.1988.0072