Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-20

Gain Flattening of Wideband FPC Antenna Using Elliptical and Rectangular Slotted AMC Layers

By Nayana Chaskar, Shishir Digamber Jagtap, Rajashree Thakare, and Rajiv Kumar Gupta
Progress In Electromagnetics Research C, Vol. 110, 81-89, 2021
doi:10.2528/PIERC21010402

Abstract

In this paper, the gain flattening of a wideband Fabry-Perot cavity (FPC) antenna, using truncated partially reflecting surface (PRS) and slotted elliptical and rectangular shape artificial magnetic conductor (AMC) layers is proposed. FPC is fed using a metal plated microstrip antenna (MSA) which comprises three layers-elliptical slotted rectangular AMC-I layer, truncated PRS layer, and rectangular slotted elliptical AMC-II layer. AMC-II layer is designed complementary to AMC-I layer to obtain gain variation < 1dB over wide frequency band. Elliptical shaped AMC-II and truncated PRS reduce the reflected fields towards ground and thus improve front to back lobe ratio (F/B) and side lobe level (SLL). These layers resonate at higher frequency and thus reduce gain variation and couple electromagnetically with MSA and AMC-I layer to provide wide bandwidth (BW). The proposed antenna provides S11 < -10 dB, 17.2 dBi peak gain with gain variation < 1.2 dB over 5.7-6.4 GHz frequency band, which covers 5.725-5.875 GHz ISM and 5.9-6.4 GHz satellite uplink C band. Broadside radiation patterns have SLL < -19 dB, cross polarization (CPL) < -17 dB, and F/B > 20 dB with wide 3 dB gain BW of 15.2%. The overall antenna dimensions are 2.3λ0x2.75λ0x0.5λ0, where λ0 is the free space wavelength corresponding to 5.8 GHz, central frequency of ISM frequency band. The measured results of the prototype fabricated structure agree with simulation ones.

Citation


Nayana Chaskar, Shishir Digamber Jagtap, Rajashree Thakare, and Rajiv Kumar Gupta, "Gain Flattening of Wideband FPC Antenna Using Elliptical and Rectangular Slotted AMC Layers," Progress In Electromagnetics Research C, Vol. 110, 81-89, 2021.
doi:10.2528/PIERC21010402
http://www.jpier.org/PIERC/pier.php?paper=21010402

References


    1. Wu, Z.-H. and W.-X. Zhang, "Broadband printed compound air fed array antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 187-191, 2010.
    doi:10.1109/LAWP.2010.2045470

    2. Jagtap, S., A. Chaudhari, N. Chaskar, S. Kharche, and R. K. Gupta, "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 509-512, 2018.
    doi:10.1109/LAWP.2018.2799873

    3. Meriche, M. A., H. Attia, A. Messai, S. I. M. Sheikh, and T. A. Denidni, "Directive wideband cavity antenna with single layer metasuperstrate," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 9, 1771-1774, 2019.
    doi:10.1109/LAWP.2019.2929579

    4. Xu, Y., R. Lian, Z. Wang, and Y.-Z. Yin, "Wideband Fabry-Perot resonator antenna with single layer partially reflective surface," Progress In Electromagnetics Research Letters, Vol. 65, 37-41, 2017.
    doi:10.2528/PIERL16072806

    5. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two layers of dielectric superstrates," IEEE Antennas Wireless Propag. Lett., Vol. 14, 229-232, 2015.
    doi:10.1109/LAWP.2014.2360703

    6. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3474-3481, Jul. 2014.
    doi:10.1109/TAP.2014.2320755

    7. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using an FSS superstrate layer," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 2101-2106, 2012.
    doi:10.1109/TAP.2012.2186230

    8. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, 2014.
    doi:10.1109/TAP.2014.2308533

    9. Chen, J., Y. Zhao, Y. Ge, and L. Xing, "Dual-band high-gain Fabry Perot cavity antenna with a shared-aperture FSS layer," IET Microw. Antennas Propag., Vol. 12, No. 13, 2007-2011, Oct. 2018.
    doi:10.1049/iet-map.2018.5183

    10. Dang, D.-N. and C. Seo, "Compact high gain resonant cavity antenna with via hole feed patch and hybrid parasitic ring superstrate," IEEE Access, Vol. 7, 161963-161974, 2019.
    doi:10.1109/ACCESS.2019.2950726

    11. Ji, L.-Y., P.-Y. Qin, and Y. J. Guo, "Wideband Fabry-Perot cavity antenna with a shaped ground plane," IEEE Access, Vol. 6, 2291-2297, 2018.
    doi:10.1109/ACCESS.2017.2782749

    12. Jagtap, S. D., R. K. Gupta, N. Chaskar, S. U. Kharche, and R. Thakare, "Gain and bandwidth enhancement of circularly polarized MSA using PRS and AMC layers," Progress In Electromagnetic Research C, Vol. 87, 107-118, 2018.
    doi:10.2528/PIERC18072205

    13. Deng, F. and J. Qi, "Shrinking profile of Fabry-Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 1, 208-212, 2020.
    doi:10.1109/LAWP.2019.2958108

    14. Lv, Y.-H., X. Ding, and B.-Z. Wang, "Dual-wideband high-gain Fabry-Perot cavity antenna," IEEE Access, Vol. 8, 4754-4760, 2020.
    doi:10.1109/ACCESS.2019.2962078

    15. Wang, N., L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with electrically thin dielectric superstrates," IEEE Access, Vol. 6, 14966-14973, 2018.
    doi:10.1109/ACCESS.2018.2810085

    16. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetic Research C, Vol. 72, 105-113, 2017.
    doi:10.2528/PIERC17011103

    17. Xie, P. and G.-M. Wang, "Design of a frequency reconfigurable Fabry-Perot cavity antenna with single layer partially reflecting surface," Progress In Electromagnetic Research Letters, Vol. 70, 115-121, 2017.
    doi:10.2528/PIERL17072505

    18. Yadav, V., S. Bhujade, and R. K. Gupta, "Efficient high gain circularly polarized microstrip antenna using asymmetrical RIS surface," 2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE), 88-91, Bhubaneswar, 2015.
    doi:10.1109/ICMOCE.2015.7489697