Vol. 111
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-11
Investigating the Performance of a New Type of Preloaded Linear Stroke Length Magnetic Spring
By
Progress In Electromagnetics Research C, Vol. 111, 1-14, 2021
Abstract
This paper presents the analytic analysis, and proof-of-principle prototyping of a new type of magnetic spring with preload and a linear stroke length. An analytic based magnetic charge modeling approach is utilized to investigate the magnetic spring's energy density, stiffness characteristics and linearity. It is shown that whilst the proposed magnetic spring has a lower mass and energy density than a mechanical spring, the magnetic spring offers several unique characteristics, such as contact-free operation, inherent preload as well as over-force failure protection. In addition, the operating principle of the presented magnetic spring can be extended to realize both positive and negative variable stiffness adjustment characteristics.
Citation
Hossein Baninajar Jonathan Bird Victor Albarran , "Investigating the Performance of a New Type of Preloaded Linear Stroke Length Magnetic Spring," Progress In Electromagnetics Research C, Vol. 111, 1-14, 2021.
doi:10.2528/PIERC21011507
http://www.jpier.org/PIERC/pier.php?paper=21011507
References

1. Hol, S. A. J., Design and optimization of a magnetic gravity compensator, Ph.D. Dissertation, Eindhoven University of Technology, 2004.

2. Patt, P. J., M. Kisco, and F. R. Stolfi, Linear magnetic spring and spring/motor combination, Patent 5,017,819, 1989.

3. Robertson, W., B. Cazzolato, and A. Zander, "A multipole array magnetic spring," IEEE Transactions on Magnetics, Vol. 41, No. 10, 3826-3828, 2005.
doi:10.1109/TMAG.2005.854981

4. Robertson, W., Modelling and design of magnetic levitation systems for vibration isolation, Thesis, 2013.

5. Wu, W., X. Chen, and Y. Shan, "Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness," Journal of Sound and Vibration, Vol. 333, No. 13, 2958-2970, Jun. 23, 2014.
doi:10.1016/j.jsv.2014.02.009

6. Casteren, D. T. E. H. V., J. J. H. Paulides, J. L. G. Janssen, and E. A. Lomonova, "Analytical force, stiffness, and resonance frequency calculations of a magnetic vibration isolator for a microbalance," IEEE Transactions on Industry Applications, Vol. 51, No. 1, 204-210, 2015.
doi:10.1109/TIA.2014.2328780

7. Zhang, H., B. Kou, Y. Jin, and H. Zhang, "Modeling and analysis of a new cylindrical magnetic levitation gravity compensator with low stiffness for the 6-DOF fine stage," IEEE Transactions on Industrial Electronics, Vol. 62, No. 6, 3629-3639, 2015.

8. Olaru, R., A. Arcire, C. Petrescu, M. M. Mihai, and B. Gırtan, "A novel vibration actuator based on active magnetic spring," Sensors and Actuators A: Physical, Vol. 264, 11-17, Sep. 01, 2017.

9. Paden, B. E., C. Chen, and O. J. Fiske, Magnetic spring and actuators with multiple equilibrium position, Patent 7,265,470 B1, 2009.

10. Janssen, J., Extended analytical charge modeling for permanent-magnet based devices: Practical application to the interactions in a vibration isolation system, Ph.D. Dissertation, Eindhoven University of Technology, 2011.

11. Janssen, J. L. G., J. J. H. Paulides, E. A. Lomonova, B. Delinchant, and J. P. Yonnet, "Design study on a magnetic gravity compensator with unequal magnet arrays," Mechatronics, Vol. 23, No. 2, 197-203, Mar. 1, 2013.
doi:10.1016/j.mechatronics.2012.08.003

12. Zhou, Y., B. Kou, L. Wang, and F. Xing, "Modeling and analysis of a maglev vibration isolation unit using rectangle Halbach permanent magnet array," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 1711-1714, Oct. 22–25, 2014.

13. Zhou, Y., B. Kou, P. Liu, H. Zhang, and B. Cazzolato, "Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system," AIP Advances, Vol. 8, 2018.

14. Janssen, J. L. G., J. J. H. Paulides, and E. A. Lomonova, "Study of magnetic gravity compensator topologies using an abstraction in the analytical interaction equations," Progress In Electromagnetics Research, Vol. 128, 75-90, 2012.
doi:10.2528/PIER11101408

15. Zhang, Q., Y. Wang, and E. S. Kim, "Electromagnetic energy harvester with flexible coils and magnetic spring for 1–10 Hz resonance," Journal of Microelectromechanical Systems, Vol. 24, No. 4, 1193-1206, 2015.
doi:10.1109/JMEMS.2015.2393911

16. Tan, Y., Y. Dong, and X. Wang, "Review of MEMS electromagnetic vibration energy harvester," Journal of Microelectromechanical Systems, Vol. 26, No. 1, 1-16, 2017.
doi:10.1109/JMEMS.2016.2611677

17. Gırtan, N. and R. Olaru, "Improving the performance of a vibration electromagnetic actuator based on active magnetic springs," 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), 284-289, Oct. 18–19, 2018.

18. Woodward, M. A. and M. Sitti, "Universal custom complex magnetic spring design methodology," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-13, 2018.
doi:10.1109/TMAG.2017.2759099

19. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401

20. Puccio, F. D., R. Bassani, E. Ciulli, A. Musolino, and R. Rizzo, "Permanent magnet bearings: Analysis of plane and axisymmetric V-shaped element design," Progress In Electromagnetics Research M, Vol. 26, 205-223, 2012.
doi:10.2528/PIERM12091406

21. Jungmayr, G., E. Marth, W. Amrhein, H. Berroth, and F. Jeske, "Analytical stiffness calculation for permanent magnetic bearings with soft magnetic materials," IEEE Transactions on Magnetics, Vol. 50, No. 8, 1-8, 2014.
doi:10.1109/TMAG.2014.2310437

22. Safaeian, R. and H. Heydari, "Comprehensive comparison of different structures of passive permanent magnet bearings," IET Electric Power Applications, Vol. 12, No. 2, 179-187, 2018.
doi:10.1049/iet-epa.2017.0308

23. Furlani, E. P., "Formulas for the force and torque of axial couplings," IEEE Transactions on Magnetics, Vol. 29, No. 5, 2295-2301, 1993.
doi:10.1109/20.231636

24. Rakotoarison, H. L., J. Yonnet, and B. Delinchant, "Using coulombian approach for modeling scalar potential and magnetic field of a permanent magnet with radial polarization," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1261-1264, 2007.
doi:10.1109/TMAG.2007.892316

25. Jefimenko, O. D., Electricity and Magnetism, Meredith Publishing Co., New York, 1966.

26. Furlani, E. P., Permanent Magnet and Electromechanical Devices Materials, Analysis, and Applications, Academic Press, San Diego, 2001.

27. Rawlings, J. O., S. G. Pantula, and D. A. Dickey, Applied Regression Analysis: A Research Tool, 2nd Ed., Springer, 1998.
doi:10.1007/b98890

28. Raymond, round wire compression springs, part # C1351-250-3000-S, https://www.asraymond.com/round-wire-compression-springs/C13512503000S, (accessed Dec. 22, 2020).

29. Raymond, round wire compression springs, part # C1218-105-1000-S, https://www.asraymond.com/round-wire-compression-springs/C12181051000S, (accessed Dec. 20, 2020.