Vol. 111
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-17
Theory, Simulation and Millimeterwave Measurement of the Operating and Parasitic Modes in a High Loss Dielectric Loaded Gyrotron Traveling Wave Amplifier (Invited)
By
Progress In Electromagnetics Research C, Vol. 111, 35-46, 2021
Abstract
In the gyrotron traveling wave amplifier (gyro-TWA), high loss dielectric materials loaded in a cylindrical waveguide are adopted to suppress the unwanted parasitic oscillations. It is of great importance to accurately understand the relative permittivity εr and tanδ for studying the microwave and millimeter wave dispersion, and loss properties of a specific mode. The high lossy dielectric loaded circuit of the gyro-TWAs made of the BeO-SiC ceramic with certain relative permittivity and loss tangent are theoretical calculated, simulated and measured. The field distribution, dispersion and loss properties of three different dielectric loaded circular HEd12, HEd22 and TEd02 modes (corresponding to the TE11, TE21 and TE01 modes in the smooth hollow cylindrical waveguide respectively) in different frequency bands are respectively investigated. The theoretical analysis, simulation, and measurement results have a good agreement. This work has clear guiding significance for the stable work of gyro-TWAs.
Citation
Weijie Wang Weijie Wang Wei Jiang Yelei Yao Jianxun Wang Yong Luo , "Theory, Simulation and Millimeterwave Measurement of the Operating and Parasitic Modes in a High Loss Dielectric Loaded Gyrotron Traveling Wave Amplifier (Invited)," Progress In Electromagnetics Research C, Vol. 111, 35-46, 2021.
doi:10.2528/PIERC21012801
http://www.jpier.org/PIERC/pier.php?paper=21012801
References

1. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 6, No. 2, 489-540, Apr. 2004.
doi:10.1103/RevModPhys.76.489

2. Garven, M., J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, "A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 885-893, Apr. 2002.
doi:10.1109/TPS.2002.801650

3. Du, C. H., T. H. Chang, P. K. Liu, Y. C. Huang, P. X. Jiang, S. X. Xu, Z. H. Geng, B. L. Hao, L. Xiao, G. F. Liu, Z. D. Li, and S. H. Shi, "Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit," IEEE Trans. on Electron Devices, Vol. 60, No. 7, 2388-2395, Jul. 2013.
doi:10.1109/TED.2013.2264100

4. Song, H. H., D. B. McDermott, Y. Hirata, L. R. Barnett, C.W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, "Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier," Plys. Plasma, Vol. 11, No. 5, 2935-2941, May 2004.
doi:10.1063/1.1690764

5. Yan, R., Y. Luo, G. Liu, and Y. L. Pu, "Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric," IEEE Trans. on Electron Devices, Vol. 59, No. 12, 3612-3617, Dec. 2012.
doi:10.1109/TED.2012.2219584

6. Yan, R., et al., "Investigation on high average power operations of gyro-TWTs with dielectric-Loaded waveguide circuits," IEEE Trans. on Electron Devices, Vol. 65, No. 7, 3012-3018, Jul. 2018.
doi:10.1109/TED.2018.2836905

7. He, W., C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, "High power wideband gyrotron backward wave oscillator operating towards the terahertz region," Phys. Rev. Lett., Vol. 90, No. 25, 258-302, Jul. 2003.

8. Samsonov, S. V., et al., "Ka-band gyrotron travelling wave tube with the highest continuous wave and average power," IEEE Trans. on Electron Devices, Vol. 61, No. 12, 4264-4267, Dec. 2014.
doi:10.1109/TED.2014.2364623

9. Samsonov, S. V., G. G. Denisov, I. G. Gachev, and A. A. Bogdashov, "CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube," IEEE Electron Device Letters, Vol. 41, No. 5, 773-776, May 2020.
doi:10.1109/LED.2020.2980572

10. Rozental, M., et al., "CW multifrequency K-band source based on a helical-waveguide gyro-TWT with delayed feedback," IEEE Trans. on Electron Devices, Vol. 68, No. 1, 330-335, Jan. 2021.
doi:10.1109/TED.2020.3036331

11. Kim, H. J., E. A. Nanni, M. A. Shapiro, J. R. Sirigiri, P. P. Woskov, and R. J. Temkin, "Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube," Phys. Rev. Lett., Vol. 110, 165101-1-165101-5, Apr. 2013.
doi:10.1103/PhysRevLett.110.017201

12. Nanni, E. A., S. M. Lewis, M. A. Shapiro, R. G. Griffin, and R. J. Temkin, "Photonic-band-gap traveling-wave gyrotron amplifier," Phys. Rev. Lett., Vol. 111, 235101-1-235101-5, Dec. 2013.

13. Chu, K. R., et al., "Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier," IEEE Trans. Plasma Sci., Vol. 27, No. 2, 391-404, Apr. 1999.
doi:10.1109/27.772266

14. Yan, R., Y. Tang, and Y. Luo, "Design and experimental study of a high-gain W-Band gyro-TWT with nonuniform periodic dielectric loaded waveguide," IEEE Trans. on Electron Devices, Vol. 61, No. 7, 2564-2569, Jul. 2014.

15. Yeh, Y. S., et al., "A study of a terahertz gyrotron traveling-wave amplifier," Plys. Plasma, Vol. 24, 103126, Oct. 2017.

16. Yeh, Y. S., C. L. Hung, T. H. Chang, Y. W. Guo, B. H. Kao, C. H. Chen, and Z. W. Wang, "Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band," Plys. Plasma, Vol. 22, 123115, Dec. 2015.
doi:10.1063/1.4938040

17. Du, C. H., S. Pan, H. Q. Bian, and P. K. Liu, "Time-domain multimode analysis of a terahertz gyro-TWT amplifier," IEEE Trans. on Electron Devices, Vol. 65, No. 4, 1550-1557, Apr. 2014.
doi:10.1109/TED.2018.2808178

18. Wang, J. X., Y. Luo, Y. Xu, R. Yan, Y. L. Pu, X. Deng, and H. Wang, "Simulation and experiment of a Ku-band gyro-TWT," IEEE Trans. on Electron Devices, Vol. 61, No. 6, 1818-1823, Jun. 2014.
doi:10.1109/TED.2013.2296552

19. Tang, Y., Y. Luo, Y. Xu, R. Yan, W. Jiang, and Y. Zheng, "Design of a novel dual-band gyro-TWT," IEEE Trans. on Electron Devices, Vol. 61, No. 11, 3858-3863, Nov. 2014.
doi:10.1109/TED.2014.2353851

20. Rao, W., L. Wang, Y. Wang, C. Fang, G. Liu, W. Jiang, J. X. Wang, Z. W. Wu, F. Y. Zhang, and Y. Luo, "Design of a high-gain X-band megawatt gyrotron traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 47, No. 6, 2818-2822, Jun. 2019.
doi:10.1109/TPS.2019.2915554

21. Li, H., J. X. Wang, Y. L. Yao, and Y. Luo, "Development of high-efficiency gyro-TWT with a nonuniform dielectric-loaded circuit," IEEE Trans. on Electron Devices, Vol. 66, No. 6, 2764-2770, Jun. 2019.
doi:10.1109/TED.2019.2912761

22. Li, Y., R. Yan, Y. L. Yao, Q. Q. Yue, X. W. Lin, W. X. Li, G. Liu, and Y. Luo, "Analysis of phase characteristics of gyrotron traveling-wave tubes," IEEE Trans. on Electron Devices, Vol. 67, No. 5, 2170-2175, May 2020.
doi:10.1109/TED.2020.2981165

23. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill Book Co., New York, 1961.

24. Marcatili, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell System Tech. J., 1783-1809, Jul. 1964.

25. Lee, C. S., S. W. Lee, and S. L. Chuang, "Normal modes in an overmoded circular waveguide coated with lossy material," IEEE Trans. on Microwave Theory and Techniques, Vol. 34, No. 7, 773-785, Jul. 1986.

26. Du, C. H. and P. K. Liu, Millimeter-wave Gyrotron Traveling-wave Tube Ampliers, 1st Ed., 210, Springer Berlin Heidelberg, 2014.
doi:10.1007/978-3-642-54728-7

27. Shcherbinin, V. I., et al., "HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface," Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration, Vol. 98, 89-93, 2015.

28. Shcherbinin, V. I., G. I. Zaginaylov, and V. I. Tkachenko, "Analogy between circular core-cladding and impedance waveguides and their membrane functions," Progress In Electromagnetics Research M, Vol. 53, 111-120, 2017.
doi:10.2528/PIERM16110902

29. Gholizadeh, M. and F. Hojjat Kashani, "A new analytical method for calculating the cutoff frequencies of an eccentrically dielectric-loaded circular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 5, 453-456, 2016.
doi:10.1109/LMWC.2020.2981925

30. Liu, G., et al., "Design and microwave measurement of a novel compact TE0n/TE1n mode converter," IEEE Trans. on Microwave Theory and Techniques, Vol. 64, No. 12, 4108-4116, 2016.
doi:10.1109/TMTT.2016.2608770