Vol. 111
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-17
The New Localized Ray-Tracing-Maximum-Likelihood Method Estimates the Probability Distribution of the Field Strength
By
Progress In Electromagnetics Research C, Vol. 111, 47-59, 2021
Abstract
The Ricean probability density function (pdf) is widely used to estimate the electromagnetic field distribution in indoor environments. The goal of using the Ricean or other pdfs is to evade the computational cost of deterministic field calculation. The parameters of the pdfs are usually obtained using the maximum-likelihood estimation which is here shown to fail in local areas close to the antenna where the direct field varies significantly. This paper presents the new localized maximum likelihood method which is valid in close regions as well. Moreover, the maximum-likelihood method requires a large number of field values within the local area to yield the parameters of the pdf. This paper presents the ray-tracing maximum-likelihood (RTML) method where a much lower number of field values are required. These values are determined using ray-tracing and without the need to account for the computationally expensive higher-order reflections. The RTML fails in local areas close to the antenna, and thus the new localized RTML is presented to restore accuracy.
Citation
Mehdi Ardavan , "The New Localized Ray-Tracing-Maximum-Likelihood Method Estimates the Probability Distribution of the Field Strength," Progress In Electromagnetics Research C, Vol. 111, 47-59, 2021.
doi:10.2528/PIERC21021308
http://www.jpier.org/PIERC/pier.php?paper=21021308
References

1. Ardavan, M., C. W. Trueman, and K. A. Schmitt, "EMI risk assessment in a hospital ward with one and two roaming wireless transmitters," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1-11, Dec. 2014.
doi:10.1109/TEMC.2014.2373895

2. Babich, F. and G. Lombardi, "Statistical analysis and characterization of the indoor propagation channel," IEEE Transactions on Communications, Vol. 48, No. 3, 455-464, Mar. 2000.
doi:10.1109/26.837048

3. Hashemi, H., "The indoor radio propagation channel," Proceedings of the IEEE, Vol. 81, No. 7, 943-968, Jul. 1993.
doi:10.1109/5.231342

4. Ardavan, M., EMI risk assessment in a hospital ward with roaming wireless transmitters, Ph.D. thesis, Concordia University, 2014.

5. Ardavan, M., C. W. Trueman, and K. Schmitt, "A sabine-rice approximation for the risk of exceeding immunity," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2363-2366, Jul. 3–8, 2011.

6. Ardavan, M., C. W. Trueman, and K. Schmitt, "Ricean and rayleigh probability distribution functions for estimating field distributions in indoor propagation," 27th Annual Review of Progress in Applied Computational Electromagnetics (ACES), 980-985, Williamsburg, Virginia, Mar. 2011.

7. Sijbers, J., A. J. den Dekker, P. Scheunders, and D. van Dyck, "Maximum-likelihood estimation of Rician distribution parameters," IEEE Transactions on Medical Imaging, Vol. 17, No. 3, 357-361, Jun. 1998.
doi:10.1109/42.712125

8. Greenstein, L. J., D. G. Michelson, and V. Erceg, "Moment-method estimation of the Ricean K-factor," IEEE Communications Letters, Vol. 3, No. 6, 175-176, Jun. 1999.
doi:10.1109/4234.769521

9. Trueman, C. W., R. Paknys, J. Zhao, D. Davis, and B. Segal, "Ray tracing algorithm for indoor propagation," ACES 16th Annual Review of Progress in Applied Computational Electromagnetics, 493-500, Monterey, California, Mar. 20–24, 2000.

10. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224

11. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1999.

12. Medawar, S., P. Handel, and P. Zetterberg, "Approximate maximum likelihood estimation of Rician K-factor and investigation of urban wireless measurements," IEEE Transactions on Wireless Communications, Vol. 12, No. 6, 2545-2555, Jun. 2013.
doi:10.1109/TWC.2013.042413.111734