Vol. 114

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-07-21

Multilayer Grid Polarizers: Simulations for Millimeter Waves

By Vladimir Borisovich Yurchenko, Mehmet Ciydem, Marcin Gradziel, and Sencer Koc
Progress In Electromagnetics Research C, Vol. 114, 69-82, 2021
doi:10.2528/PIERC21031107

Abstract

Multilayer grid polarizers for millimeter waves produced with photolithographic technology have been simulated. Polarizers have spectral bands of enhanced performance where polarization extinction ratio in decibels grows in proportion to the number of layers. Full-wave modeling is compared with three asymptotic models for subwavelength gratings using adjusted grating parameters. Random variations of interlayer spacings reduce the enhancement of polarizing performance, yet the latter continues to grow in proportion to the number of layers. Broadband signal detection is also considered.

Citation


Vladimir Borisovich Yurchenko, Mehmet Ciydem, Marcin Gradziel, and Sencer Koc, "Multilayer Grid Polarizers: Simulations for Millimeter Waves," Progress In Electromagnetics Research C, Vol. 114, 69-82, 2021.
doi:10.2528/PIERC21031107
http://www.jpier.org/PIERC/pier.php?paper=21031107

References


    1. Schott, J. R., Fundamentals of Polarimetric Remote Sensing, Vol. 81, SPIE Press, 2009.
    doi:10.1117/3.817304

    2. Ryzhkov, A. V. and D. S. Zrnic, Radar Polarimetry for Weather Observations, Springer Nature Switzerland AG, Cham, Switzerland, 2019.
    doi:10.1007/978-3-030-05093-1

    3. Dai, H., X. Wang, H. Xie, S. Xiao, and J. Luo, Spatial Polarization Characteristics of Radar Antenna. Analysis, Measurement and Anti-jamming Application, Springer and National Defense Industry Press, Beijing, 2019.

    4. Kuwata-Gonokami, M., "Terahertz spectroscopy: Ellipsometry and active polarization control for terahertz waves," Terahertz Spectroscopy and Imaging, Reiponen, K.-E., J. A. Zeitler, and M. Kuwata-Gonokami, Eds., Springer Series in Optical Sciences, Vol. 171, W. T. Rhodes, Editor-in-Chief, Springer, 2013.

    5. Cheng, Y., L. Qiao, D. Zhu, Y. Wang, and Z. Zhao, "Passive polarimetric imaging of millimeter and terahertz waves for personnel security screening," Opt. Lett., Vol. 46, No. 6, 1233-1236, 2021.
    doi:10.1364/OL.418497

    6. Weber, T., T. Käsebier, M. Helgert, E.-B. Kley, and A. Tünnermann, "Tungsten wire grid polarizer for applications in the DUV spectral range," Appl. Opt., Vol. 51, No. 16, 3224-3227, 2012.
    doi:10.1364/AO.51.003224

    7. Wang, J. J., W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett., Vol. 30, No. 2, 195-197, 2005.
    doi:10.1364/OL.30.000195

    8. Zhou, L. and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett., Vol. 30, No. 12, 1434-1436, 2005.
    doi:10.1364/OL.30.001434

    9. Soares, L. L. and L. Cescato, "etallized photoresist grating as a polarizing beam splitter," Appl. Opt., Vol. 40, No. 32, 5906-5910, 2001.
    doi:10.1364/AO.40.005906

    10., , https://www.purewavepolarizers.com/wire-grid-polarizers/10-micron-wire-far-ir-thz-polarizer [Accessed: 2021-07-02].
    doi:10.1364/AO.40.005906

    11. Manabe, T. and A. Murk, "Transmission and reflection characteristics of slightly irregular wiregrids with finite conductivity for arbitrary angles of incidence and grid rotation," IEEE Trans. Anten. Propagat., Vol. 53, No. 1, 250-259, 2005.
    doi:10.1109/TAP.2004.838786

    12. Den Boer, J. H. W. G., G. M. W. Kroesen, W. de Zeeuw, and F. J. de Hoog, "Improved polarizer in the infrared: Two wire-grid polarizers in tandem," Opt. Lett., Vol. 20, No. 7, 800-802, 1995.
    doi:10.1364/OL.20.000800

    13. Yu, Z., P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett., Vol. 77, No. 7, 927-929, 2000.
    doi:10.1063/1.1288674

    14. Ekinci, Y., H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express, Vol. 14, No. 6, 2323-2334, 2006.
    doi:10.1364/OE.14.002323

    15. Yurchenko, V. B. and E. V. Yurchenko, "Dual-layer frequency-selective subwavelength-grid polarizers for THz applications," Proceedings of the 6th International Kharkov Symposium Physics and Engineering of Microwaves, MM and SubMM Waves (MSMW-07), 222-224, Kharkov, Ukraine, June 25–30, 2007.

    16. Yurchenko, V. B., M. L. Gradziel, and J. A. Murphy, "Dual-layer grid polarizers for mm and submm waves: theory and experiment," Proceedings of the 7th International Kharkov Symposium on Physics and Engineering of Microwaves, MM, SubMM Waves and Workshop on THz Technology (MSMW-10), W-5, Kharkov, Ukraine, June 21–26, 2010.

    17. Yurchenko, V. B., J. A. Murphy, J. Barton, J. Verheggen, and K. Rodgers, "Dual-layer frequency-selective grid polarizers on thin-film substrates for THz applications," Proceedings of the EuMW 2008: 38th European Microwave Conference 2008 (EuMC-2008), 10.14-10.17, Amsterdam, The Netherlands, October 28–31, 2008.

    18. Sun, L., Z.-H. Lv, W. Wu, W.-T. Liu, and J.-M. Yuan, "Double-grating polarizer for terahertz radiation with high extinction ratio," Appl. Opt., Vol. 49, No. 11, 2066-2071, 2010.
    doi:10.1364/AO.49.002066

    19. Deng, L. Y., J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, "Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure," Appl. Phys. Lett., Vol. 101, 011101, 2012.
    doi:10.1063/1.4729826

    20. Lee, Y. H., P. Peranantham, and C. K. Hwangbo, "Fabrication of a bilayer wire grid polarizer in the near infrared wavelength region by using a UV curing nanoimprinting method," J. Korean Phys. Soc., Vol. 61, No. 10, 1714-1719, 2012.
    doi:10.3938/jkps.61.1714

    21. Huang, Z., E. P. J. Parrott, H. Park, H. P. Chan, and E. Pickwell-MacPherson, "High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure," Opt. Lett., Vol. 39, No. 4, 793-796, 2014.
    doi:10.1364/OL.39.000793

    22. Lu, B., H. Wang, J. Shen, J. Yang, H. Mao, L. Xia, W. Zhang, G. Wang, X.-Y. Peng, and D. Wang, "A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure," AIP Adv., Vol. 6, 025215, 2016.
    doi:10.1063/1.4942515

    23. Xiang, W., X. Huang, D. Li, Q. Zhou, H. Guo, and J. Li, "High extinction ratio terahertz broadband polarizer based on the aligned Ni nanowire arrays," Opt. Lett., Vol. 45, No. 7, 1978-1981, 2020.
    doi:10.1364/OL.388772

    24. Lee, J.-K., B. O. Kim, J. Park, J. B. Kim, I.-S. Kang, G. Sim, J. H. Park, and H.-I. Jang, "A bilayer Al nanowire-grid polarizer integrated with an IR-cut filter," Opt. Mat., Vol. 98, 109409, 2019.
    doi:10.1016/j.optmat.2019.109409

    25. Ferraro, A., D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, and R. Beccherelli, "Flexible terahertz wire grid polarizer with high extinction ratio and low loss," Opt. Lett., Vol. 41, No. 9, 2009-2012, 2016.
    doi:10.1364/OL.41.002009

    26. Islam, M. D., et al., "Design of high efficient mid-wavelength infrared polarizer on ormochalc polymer," Macromol. Mater. Eng., Vol. 305, 2000033, 2020.
    doi:10.1002/mame.202000033

    27. Popov, E. (ed.), Gratings: Theory and Numeric Applications, Institut Fresnel, CNRS, AMU, Marseille, France, 2012.

    28. Sirenko, Y. K., S. Ström, and Eds., Modern Theory of Gratings, Springer, New York, 2010.
    doi:10.1007/978-1-4419-1200-8

    29., , https://www.pdesolutions.com [Accessed: 2021-07-02].

    30. Yurchenko, V., T. Navruz, M. Ciydem, and A. Altintas, "Light-controlled polarization of mm-waves with photo-excited gratings in a resonant semiconductor slab," Adv. Electromagnetics, Vol. 8, No. 2, 92-100, 2019.
    doi:10.7716/aem.v8i2.952

    31. Wainstein, L. A., "On the electrodynamic theory of grids. Part I, II," Elektronika Bol'shikh Moshchnostei, Vol. 2, 26-73, P. L. Kapitza and L. A. Wainstein, Eds., Moscow, 1963 [Engl. transl. in High-Power Electronics, 14–48, Pergamon Press, Oxford, 1966].

    32. Agranovich, Z. S., V. A. Marchenko, and V. P. Shestopalov, "Diffraction of electromagnetic waves from plane metallic gratings," Zhurnal Tehnicheskoy Fiziki, Vol. 32, No. 4, 381-394, 1962 (in Russian).

    33. Shestopalov, V. P., The Method of the Riemann-Hilbert Problem in the Theory of Electromagnetic Wave Diffraction and Propagation, Kharkov State Univ. Press, Kharkov, 1971 (in Russian).

    34. Shestopalov, V. P., L. N. Litvinenko, S. A. Masalov, and V. G. Sologub, Wave Diffraction by Gratings, Kharkov State Univ. Press, Kharkov, 1973 (in Russian).

    35. Solimeno, S., B. Crosignani, and P. Di Porto, Guiding, Diffraction, and Confinement of Optical Radiation, Academic Press, London, 1986.

    36. Yurchenko, V., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Light-controlled photonics-based mm-wave beam switch," Opt. Express, Vol. 24, No. 15, 16471, 2016.
    doi:10.1364/OE.24.016471

    37. Yurchenko, V., M. Ciydem, M. Gradziel, and L. Yurchenko, "MM-wave dielectric parameters of magnesium fluoride glass wafers," Progress In Electromagnetics Research M, Vol. 62, 89-98, 2017.
    doi:10.2528/PIERM17081805

    38. Yurchenko, V., M. Ciydem, M. Gradziel, and J. A. Murphy, "Major reshaping of narrow beams by resonant multilayer structures," Opt. Express, Vol. 28, No. 6, 8211, 2020.
    doi:10.1364/OE.386610

    39. Soriano, G., M. Zerrad, and C. Amra, "Anti-scattering effect analyzed with exact theory of light scattering from rough multilayers," Opt. Lett., Vol. 44, No. 18, 4455, 2019.
    doi:10.1364/OL.44.004455

    40. Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 4: Wave Propagation Through Random Media, Springer-Verlag, Berlin, 1987.

    41. Yurchenko, V. B., M. Ciydem, M. Gradziel, J. A. Murphy, and A. Altintas, "Double-sided split-step mm-wave Fresnel lenses: Design, fabrication and focal field measurements," J. Europ. Opt. Soc. Rap. Publ., Vol. 9, 14007, 2014.
    doi:10.2971/jeos.2014.14007

    42. Yurchenko, V. B., A. Altintas, M. Ciydem, and S. Koc, "Experimental conditions for the excitation of thin disk whispering-gallery-mode resonators," Progress In Electromagnetics Research C, Vol. 43, 29-40, 2013.
    doi:10.2528/PIERC13062803