Vol. 112

Latest Volume
All Volumes
All Issues

Stubs and Slits Loaded Partial Ground Plane Inspired Novel Hexagonal Ring-Shaped Fractal Antenna for 5G/LTE/RFID/GSM/Bluetooth/WLAN/WiMAX Wireless Applications: Design and Measurement

By Narinder Sharma and Sumeet Singh Bhatia
Progress In Electromagnetics Research C, Vol. 112, 99-111, 2021
doi:10.2528/PIERC21040601

Abstract

A multiband hexagonal ring-shaped fractal antenna with stubs and slits loaded partial ground plane has been presented in this manuscript. The proposed antenna is compact in size 24×30×1.6 mm3 and exhibits enhanced bandwidth, gain, and reflection coefficient. Measured results exhibit that the proposed antenna resonates with impedance bandwidth (S11 ≤ -10 dB) in the frequency ranges 1.0-2.75 GHz, 4.74-8.70 GHz, 11.04-12.76 GHz, 14.97-16.62 GHz, and 19.70-22.0 GHz. These frequency ranges cover distinct wireless standards such as 1800 MHz 2G spectrum of GSM band (1.71-1.88 GHz), LTE 2300/LTE 2500 (2.3-2.4 GHz/2.5-2.69 GHz), RFID/Bluetooth (2.4 GHz), 5G spectrum band (5900-6400 MHz) adopted by European Union, Long Term Evolution (LTE) band 46 (5150-5925 GHz), RFID (5.4 GHz), WLAN (5.15-5.35 and 5.72-5.85 GHz), Wi-MAX (5.25-5.85 GHz), FSS (11.45-11.7/12.5-12.75 GHz), defence systems (14.62-15.23 GHz), aeronautical radio navigations (15.43-17.3 GHz), and fixed/mobile satellite communications (19.7-20.1 GHz and 20.2- 21.2 GHz). The proposed antenna reveals the positive value of peak realized gain with almost omnidirectional radiation patterns in E- and H-planes for all the resonant frequency bands. The performance of proposed antenna has been realized by using HFSS V13 simulator based on FEM (Finite Element Method), and the results are compared with the experimental results which are in good agreement with each other.

Citation


Narinder Sharma and Sumeet Singh Bhatia, "Stubs and Slits Loaded Partial Ground Plane Inspired Novel Hexagonal Ring-Shaped Fractal Antenna for 5G/LTE/RFID/GSM/Bluetooth/WLAN/WiMAX Wireless Applications: Design and Measurement," Progress In Electromagnetics Research C, Vol. 112, 99-111, 2021.
doi:10.2528/PIERC21040601
http://www.jpier.org/PIERC/pier.php?paper=21040601

References