Vol. 112

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-05-18

A Comparative Study of Some Novel Wideband Tulip Flower Monopole Antennas with Modified Patch and Ground Plane

By Nurhayati Nurhayati, Alexandre Manicoba De-Oliveira, Warangkana Chaihongsa, Bagus Edy Sukoco, and Akbar Kurnia Saleh
Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021
doi:10.2528/PIERC21040707

Abstract

Comparative study of some novel wideband Tulip Flower Monopole Antennas (TFMAs) is presented in this paper. To Improve the bandwidth and increase the gain, modification of the shape of the curves and slots in the patch and ground plane was carried out on the seven TFMAs. TFMA-A, TFMA-B, TFMA-C, and TFMA-D have dimensions of 50×50 mm2, while TFMA-E, TFMA-F, and TFMA-G have dimensions of 30×70 mm2. From the simulation result, TFMA-A operated from 2 GHz to more than 30 GHz with a return loss of 15 dB occupies most of its operating frequency. In the whole frequency work, the peak directivity performance in the order of superiority is obtained for TFMA-G, TFMA-F, TFMA-D, TFMA-E, TFMA-C, TFMA-B, and TFMA-A. The improvement of directivity is reached for TFMA-D of 5.03 if it is compared to TFMA-A at 24 GHz. TFMA-G obtains the peak of directivity of 10.148 dBi at 23 GHz. The impedance bandwidth and directivity of the antenna element change by varying the curvature, the shape, and the position of slot in the radiator and ground plane also the height of the microstrip feeding line and ground plane. The return losses of the TFMA-A and TFMA-E show good agreement between simulation and measurement results.

Citation


Nurhayati Nurhayati, Alexandre Manicoba De-Oliveira, Warangkana Chaihongsa, Bagus Edy Sukoco, and Akbar Kurnia Saleh, "A Comparative Study of Some Novel Wideband Tulip Flower Monopole Antennas with Modified Patch and Ground Plane," Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021.
doi:10.2528/PIERC21040707
http://www.jpier.org/PIERC/pier.php?paper=21040707

References


    1. Chen, H., X. Yang, Y. Z. Yin, S. T. Fan, and J. J. Wu, "Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1440-1443, 2013.
    doi:10.1109/LAWP.2013.2287312

    2. Zehforoosh, Y. and T. Sedghi, "An improved CPW-fed printed UWB antenna with controllable band-notched functions," Journal of Communication Engineering, Vol. 5, No. 1, 38-49, 2016.

    3. Liu, Y., P. Liu, Z. Meng, L. Wang, and Y. Li, "A planar printed nona-band loop-monopole reconfigurable antenna for mobile handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1575-1579, 2018.
    doi:10.1109/LAWP.2018.2856459

    4. Liu, C. S., C. N. Chiu, and S. M. Deng, "A compact disc-slit monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 251-254, 2008.

    5. Pourahmadazar, J., C. Ghobadi, J. Nourinia, and H. Shirzad, "Multiband ring fractal monopole antenna for mobile devices," IEEE Antennas and Wireless Propagation Letters, Vol. 9, No. 1, 863-866, 2010.
    doi:10.1109/LAWP.2010.2071372

    6. Moosazadeh, M. and S. Kharkovsky, "Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 388-391, 2014.
    doi:10.1109/LAWP.2014.2306962

    7. Zhu, Y., F. S. Zhang, C. Lin, Y. C. Jiao, and R. Zou, "Design of a compact dual-band printed monopole antenna for WLAN applications," 2010 9th Int. Symp. Antennas Propag. EM Theory, ISAPE 2010, 1-3, 2010.

    8. Li, J., Y. Huang, G. Wen, L. Ma, W. Hu, and W. Gu, "A six-octave wideband and low profile log-period monopole endfire antenna," 2018 IEEE Antennas Propag. Soc. Int. Symp. Usn. Natl. Radio Sci. Meet. APSURSI 2018 — Proc, Vol. 2, 843-844, 2018.

    9. Zhang, L., Y. C. Jiao, Y. Ding, B. Chen, and Z. Bin Weng, "CPW-fed broadband circularly polarized planar monopole antenna with improved ground-plane structure," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4824-4828, 2013.
    doi:10.1109/TAP.2013.2267719

    10. Dong, Y. and T. Itoh, "Planar ultra-wideband antennas in Ku- and K-band for the pattern or polarization diversity applications," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2886-2895, 2012.
    doi:10.1109/TAP.2012.2194680

    11. Beaskoetxea, U., A. E. Torres-Garcia, and M. Beruete, "Ku-band low-profile asymmetric Bull’s-eye antenna with reduced sidelobes and monopole feeding," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 401-404, 2018.
    doi:10.1109/LAWP.2018.2791660

    12. Yeoh, W. S. and W. S. T. Rowe, "A UWB conical monopole antenna for multiservice wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 1085-1088, 2015.
    doi:10.1109/LAWP.2015.2394295

    13. Pascale, V., D. Maiarelli, L. D'Agristina, and N. Gatti, "Design and qualification of Ku-band-radiating chains for receiving active array antennas of flexible telecommunication satellites," Int. J. Microw. Wirel. Technol., Vol. 12, No. 6, 487-503, 2020.
    doi:10.1017/S1759078720000227

    14. Mei, L., L. Lang, N. Zhang, Y. Li, Y. Zhou, S. Chu, Y. Liu, and J. Yang, "A Ku-band conformal half-Yagi antenna for microwave communication," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1980-1986, Xiamen, China, 2019.
    doi:10.1109/PIERS-Fall48861.2019.9021608

    15. Oskouei, H. R. D., A. R. Dastkhosh, A. Mirtaheri, and M. Naseh, "A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5g/IoT applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
    doi:10.2528/PIERM19051802

    16. Nurhayati, N., A. M. De Oliveira, J. F. Justo, E. Setijadi, B. E. Sukoco, and E. Endryansyah, "A compact monopole antenna for super wideband applications," Microw. Opt. Technol. Lett., Vol. 62, No. 2, 964-974, 2020.
    doi:10.1002/mop.32127

    17. Nurhayati, G. H., T. Fukusako, and E. Setijadi, "Mutual coupling reduction for a UWB coplanar vivaldi array by a truncated and corrugated slot," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2284-2288, 2018.
    doi:10.1109/LAWP.2018.2873115

    18. Wen, B. J., L. Peng, X. F. Li, K. S. Mo, X. Jiang, and S. M. Li, "A low-profile and wideband unidirectional antenna using bandwidth enhanced resonance-based reflector for fifth generation (5G) systems applications," IEEE Access, Vol. 07, 27352-27361, 2019.
    doi:10.1109/ACCESS.2019.2901765

    19. Yang, D., S. Liu, and D. Geng, "A miniaturized ultra-wideband Vivaldi antenna with low cross-polarization," IEEE Access, Vol. 05, 23352-23357, 2017.
    doi:10.1109/ACCESS.2017.2766184

    20. Zhou, Y., F. Zhu, S. Gao, Q. Luo, L.Wen, Q. Wang, X. Yang, Y. Geng, and Z. Cheng, "Tightly coupled array antennas for ultra-wideband wireless systems," IEEE Access, Vol. 06, 61851-61866, 2018.
    doi:10.1109/ACCESS.2018.2873741

    21. Wen, B. J., L. Peng, X. F. Li, K. S. Mo, X. Jiang, and S. M. Li, "A low-profile and wideband unidirectional antenna using bandwidth enhanced resonance-based reflector for fifth generation (5G) systems applications," IEEE Access, Vol. 07, 27352-27361, 2019.
    doi:10.1109/ACCESS.2019.2901765

    22. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single-band suppression," Int. J. Microw. Wirel. Technol, Vol. 9, No. 1, 143-150, 2017.
    doi:10.1017/S1759078715000963

    23. Chen, K. R., C. Y. D. Sim, and J. S. Row, "A compact monopole antenna for super wideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 488-491, 2011.
    doi:10.1109/LAWP.2011.2157071

    24. Elhabchi, M., M. N. Srifi, and R. Touahni, "A novel CPW-fed semi-circular triangular antenna with modified ground plane for super ultra wide band (UWB) applications," ” Int. Symp. Adv. Electr. Commun. Technol. ISAECT 2018 — Proc, 1-5, 2019.

    25. Seyfollahi, A. and J. Bornemann, "Printed-circuit monopole antenna for super-wideband applications," 12th European Conference on Antennas and Propagation (EuCAP), 2018, 1-5, 2018.

    26. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications," IET Microwaves, Antennas Propag., Vol. 8, No. 1, 39-45, 2014.
    doi:10.1049/iet-map.2013.0094

    27. Haupt, R. L., "Antenna arrays," A Computational Approach, Wiley Online Library, 2010.