Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-07-09

Metasurface Incorporated Frequency Reconfigurable Planar Antenna for Wireless Applications

By Navneet Kaur, Jagtar Singh Sivia, and Rajni
Progress In Electromagnetics Research C, Vol. 113, 265-275, 2021
doi:10.2528/PIERC21052703

Abstract

In this paper, the design of a Metasurface incorporated Frequency Reconfigurable Planar Antenna (MS-FRPA) for Wireless Applications is presented. The structure of projected MS-FRPA consists of a patch with a metasurface placed one above the other with no gap between them. The MS is composed of an array of alternately placed dual split ring resonators arranged periodically in both horizontal and vertical directions. Frequency reconfiguration is achieved by rotating the MS relative to the designed patch antenna. The projected reconfigurable antenna is constructed on Rogers RO4350B material with thickness 1.524 mm. High Frequency Structure Simulator software is employed for analysis of the structure. The results clearly reveal that frequency tuning is achieved in 4.35 to 5.33 GHz with a fractional tuning range of 20.2%. The proposed structure provides appreciable realized gain with stable radiation patterns at all rotation angles. Further, the measured outcomes of the developed prototype show good correlation with the simulated outcomes.

Citation


Navneet Kaur, Jagtar Singh Sivia, and Rajni, "Metasurface Incorporated Frequency Reconfigurable Planar Antenna for Wireless Applications," Progress In Electromagnetics Research C, Vol. 113, 265-275, 2021.
doi:10.2528/PIERC21052703
http://www.jpier.org/PIERC/pier.php?paper=21052703

References


    1. Sabapathy, T., M. F. Bin Jamlos, R. B. Ahmad, M. Jusoh, M. I. Jais, and M. R. Kamarudin, "Electronically reconfigurable beam steering antenna using embedded RF PIN based parasitic arrays (ERPPA)," Progress In Electromagnetics Research, Vol. 140, 241-261, 2013.
    doi:10.2528/PIER13042906

    2. Bhangi, I. K. and J. S. Sivia, "Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications," International Journal of Electronics and Communications, Vol. 85, 159-168, Feb. 2018.
    doi:10.1016/j.aeue.2018.01.005

    3. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
    doi:10.2528/PIERB13091611

    4. Singh, J., A. P. Singh, and T. S. Kamal, "Estimation of resonant frequency of a circular microstrip antenna using artificial neural network," Journal of the Institution of Engineers (India): Series B, Vol. 93, No. 1, 7-13, Mar.–May 2012.
    doi:10.1007/s40031-012-0002-3

    5. Ge, L. and K. M. Luk, "Frequency-reconfigurable low-profile circular monopolar patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3443-3449, Jul. 2014.

    6. Kaur, K. and J. S. Sivia, "A compact hybrid multiband antenna for wireless applications," Wireless Personal Communications, Vol. 97, No. 4, 5917-5927, Dec. 2017.
    doi:10.1007/s11277-017-4818-7

    7. Bhatia, S. S. and J. S. Sivia, "On the design of fractal antenna array for multiband applications," Journal of the Institution of Engineers (India): Series B, Vol. 100, 471-476, May 2019.
    doi:10.1007/s40031-019-00409-9

    8. Anantha, B., L. Meregu, and P. V. D. S. Rao, "A novel single feed frequency and polarization reconfigurable microstrip patch antenna," International Journal of Electronics and Communications, Vol. 72, 8-16, Feb. 2017.
    doi:10.1016/j.aeue.2016.11.012

    9. Li, T., H. Zhai, and C. H. Liang, "Frequency reconfigurable bow-tie antenna array," Electronics Letters, Vol. 50, No. 18, 1264-1266, Aug. 2014.
    doi:10.1049/el.2014.1708

    10. Zhu, H. L., X. H. Liu, S. W. Cheung, and T. I. Yuk, "Frequency-reconfigurable antenna using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 80-85, Jan. 2014.
    doi:10.1109/TAP.2013.2288112

    11. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas and Propagation Magazine, Vol. 55, No. 1, 49-61, Feb. 2013.
    doi:10.1109/MAP.2013.6474484

    12. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O. Hara, J. Booth, and D. R. Smith, "An overview of theory and applications of metasurfaces: The two dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, Apr. 2012.
    doi:10.1109/MAP.2012.6230714

    13. Zhu, H. L., S. W. Cheung, X. H. Liu, Y. F. Cao, and T. I. Yuk, "Frequency reconfigurable slot antenna using metasurface," The 8th European Conference on Antennas and Propagation (EuCAP), 2575-2577, The Hague, Netherlands, Apr. 2014.

    14. Chatterjee, J., A. Mohan, and V. Dixit, "A novel frequency reconfigurable slot antenna using metasurface," IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, Dec. 16–19, 2018.

    15. Zhu, M. and L. Sun, "Design of frequency reconfigurable antenna based on metasurface," IEEE 2nd Advanced Information Technology, Electronic, and Automation Control Conference (IAEAC), Chongqing, China, Mar. 2017.

    16. Chen, X. and Y. Zhao, "Dual-band polarization and frequency reconfigurable antenna using double layer metasurface," International Journal of Electronics and Communications, Vol. 95, 82-87, Oct. 2018.

    17. Li, H., X. Man, and J. Qi, "Accurate and robust characterization of metasurface-enabled frequency reconfigurable antennas by radially homogeneous model," IEEE Access, Vol. 7, 122605-122612, Sept. 2019.
    doi:10.1109/ACCESS.2019.2938804

    18. Sethi, A. and Rajni, "Determination of electromagnetic parameters of a new metasurface comprising of square loop," Journal of Engineering Science and Technology, Vol. 13, No. 1, 48-57, 2018.

    19. Rajni, R. and A. Marwaha, "Electrically small microstrip patch antenna loaded with spiral resonator for wireless applications," Wireless Personal Communications, Vol. 96, No. 2, 2621-2632, Sept. 2017.
    doi:10.1007/s11277-017-4315-z

    20. Sharma, N. and S. S. Bhatia, "Double split labyrinth resonator-based CPW-fed hybrid fractal antennas for PCS/UMTS/WLAN/Wi-Max applications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2476-2498, Dec. 2019.
    doi:10.1080/09205071.2019.1685009

    21. Rajni, A. Marwaha, "Resonance characteristics and effective parameters of new left hand metamaterial," Telkomnika Indonesian Journal of Electrical Engineering, Vol. 15, No. 3, 497-503, Sept. 2015.
    doi:10.11591/tijee.v15i3.1567

    22. Rajni, R. and A. Marwaha, "An accurate approach of mathematical modeling of SRR and SR for metamaterials," Journal of Engineering Science and Technology Review, Vol. 9, No. 6, 82-86, Dec. 2016.
    doi:10.25103/jestr.096.11

    23. Rao, S. J. M., R. Sarkar, G. Kumar, and D. B. Chowdhury, "Gradual cross polarization conversion of transmitted waves in near field coupled planar terahertz metamaterials," OSA Continuum, Vol. 2, No. 3, 603-614, Mar. 2019.
    doi:10.1364/OSAC.2.000603