Vol. 114

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-07-29

Multi-Objective Optimal Design of the MFW-IPM Machine for Improve Flux-Weakening Ability

By Xiping Liu, Gaosheng Guo, Wenjian Zhu, and Longxin Du
Progress In Electromagnetics Research C, Vol. 114, 97-112, 2021
doi:10.2528/PIERC21060303

Abstract

In this paper, a novel mechanical-flux-weakening interior permanent magnet (MFW-IPM) machine is proposed to improve flux-weakening ability. The key of the proposed machine is that the permanent magnet is rotatable, and a mechanical device is equipped on both sides of the rotor. The mechanical device can regulate the air-gap magnetic field by rotating PM to change the leakage flux and magnetization direction of PM. As a result, the flux-weakening ability is improved. The flux-weakening principle of the MFW-IPM machine is investigated in detail. In addition, a multi-objective optimization method is adopted to improve the performance of the proposed machine. Then, the electromagnetic performances of the original machine and optimized machine are compared by finite element analysis. Finally, both simulation results and experimental tests verify the effectiveness of the flux-weakening enhancement design and optimization method.

Citation


Xiping Liu, Gaosheng Guo, Wenjian Zhu, and Longxin Du, "Multi-Objective Optimal Design of the MFW-IPM Machine for Improve Flux-Weakening Ability," Progress In Electromagnetics Research C, Vol. 114, 97-112, 2021.
doi:10.2528/PIERC21060303
http://www.jpier.org/PIERC/pier.php?paper=21060303

References


    1. Wang, H. and S. Fang, "Design of new dual-stator field modulation machines," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5626-5636, 2020.
    doi:10.1109/TIE.2019.2931516

    2. Chen, Q., et al., "A novel spoke-type PM motor with auxiliary salient poles for low torque pulsation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4762-4773, 2020.
    doi:10.1109/TIE.2019.2924864

    3. Wang, D., X. Wang, and S. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2295-2298, 2013.
    doi:10.1109/TMAG.2013.2242454

    4. Huynh, T. A. and M. Hsieh, "Comparative study of PM-assisted SynRM and IPMSM on constant power speed range for EV applications," IEEE Trans. Magn., Vol. 53, No. 11, 1-6, 2017.
    doi:10.1109/TMAG.2017.2707125

    5. Amin, M. and G. A. A. Aziz, "Hybrid adopted materials in permanent magnet-assisted synchronous reluctance motor with rotating losses computation," IEEE Trans. Magn., Vol. 55, No. 6, 1-5, 2019.
    doi:10.1109/TMAG.2019.2904989

    6. Wu, W., "Design and analysis of a new permeability-modulated interior permanent-magnet synchronous machine," IEEE Trans. Magn., Vol. 57, No. 2, 1-5, 2021.

    7. Jang, J., M. Humza, and B. Kim, "Design of a variable-flux permanent-magnet synchronous motor for adjustable-speed operation," IEEE Trans. Ind. Appl., Vol. 52, No. 4, 2996-3004, 2016.
    doi:10.1109/TIA.2016.2547986

    8. Ibrahim, M., L. Masisi, and P. Pillay, "Design of variable flux permanent-magnet machine for reduced inverter rating," IEEE Trans. Ind. Appl., Vol. 51, No. 5, 3666-3674, 2015.
    doi:10.1109/TIA.2015.2423661

    9. Sarigiannidis, A. G., M. E. Beniakar, and A. G. Kladas, "Fast adaptive evolutionary PM traction motor optimization based on electric vehicle drive cycle," IEEE Trans. Veh. Technol., Vol. 66, No. 7, 5762-5774, 2017.
    doi:10.1109/TVT.2016.2631161

    10. Liu, X., et al., "Research on the performances and parameters of interior PMSM used for electric vehicles," IEEE Trans. Ind. Electron., Vol. 63, No. 6, 3533-3545, 2016.
    doi:10.1109/TIE.2016.2524415

    11. Zhao, X., S. Niu, and W. Fu, "Design of a novel parallel-hybrid-excited dual-PM machine based on armature harmonics diversity for electric vehicle propulsion," IEEE Trans. Ind. Electron, Vol. 66, No. 6, 4209-4219, 2019.
    doi:10.1109/TIE.2018.2863211

    12. Giulii, F., et al., "Axial-flux hybrid-excitation synchronous machine: analysis, design, and experimental evaluation," IEEE Trans. Ind. Appl., Vol. 50, No. 5, 3173-3184, 2014.
    doi:10.1109/TIA.2014.2303253

    13. Zhang, L., et al., "Design and analysis of new five-phase flux-intensifying faulttolerant interior-permanent-magnet motor for sensorless operation," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 6055-6065, 2020.
    doi:10.1109/TIE.2019.2955407

    14. Zhu, X., et al., "Comprehensive sensitivity analysis and multiobjective optimization research of permanent magnet flux-intensifying motors," IEEE Trans. Ind. Electron., Vol. 66, No. 4, 2613-2627, 2019.
    doi:10.1109/TIE.2018.2849961

    15. Zhao, X., et al., "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 6, 182249-182259, 2020.
    doi:10.1109/ACCESS.2020.3026841

    16. Limsuwan, N., et al., "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Trans. Ind. Appl., Vol. 50, No. 2, 1015-1024, 2014.
    doi:10.1109/TIA.2013.2273482

    17. Yu, C., et al., "Position self-sensing evaluation of a FI-IPMSM based on high-frequency signal injection methods," IEEE Trans. Ind. Appl., Vol. 49, No. 2, 880-888, 2013.
    doi:10.1109/TIA.2013.2243396

    18. Yang, H., "Investigation of hybrid-magnet-circuit variable flux memory machines with different hybrid magnet configurations," IEEE Trans. Ind. Appl., Vol. 57, No. 1, 340-351, 2021.
    doi:10.1109/TIA.2020.3033836

    19. Yang, H., et al., "Comparative study of partitioned stator memory machines with series and parallel hybrid PM configurations," IEEE Trans. Magn., Vol. 55, No. 7, 1-8, 2019.
    doi:10.1109/TMAG.2019.2894833

    20. Liu, G., et al., "Improvement of torque capability of permanent-magnet motor by using hybrid rotor configuration," IEEE Trans. Energy Convers., Vol. 32, No. 3, 953-962, 2017.
    doi:10.1109/TEC.2017.2665686

    21. Du, Z. S. and T. A. Lipo, "Cost-effective high torque density Bi-magnet machines utilizing rare earth and ferrite permanent magnets," IEEE Trans. Energy Convers., Vol. 35, No. 3, 1577-1584, 2020.
    doi:10.1109/TEC.2020.2978256

    22. Lee, J. H., et al., "Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine," IEEE Trans. Magn., Vol. 53, No. 6, 1-4, 2017.

    23. Sun, X., et al., "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Trans. Ind. Electron., Vol. 68, No. 1, 139-148, 2021.
    doi:10.1109/TIE.2020.2965463

    24. Liu, G., et al., "Multiobjective deterministic and robust optimization design of a new spoke-type permanent magnet machine for the improvement of torque performance," IEEE Trans. Ind. Electron., Vol. 67, No. 12, 10202-10212, 2020.
    doi:10.1109/TIE.2019.2962472

    25. Du, G., et al., "Multiphysics design and multiobjective optimization for high-speed permanent magnet machines," IEEE Trans. Trans. Electr., Vol. 6, No. 3, 1084-1092, 2020.
    doi:10.1109/TTE.2020.2998639