Vol. 114
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-05
Multi-Resonator Variations of Circular Microstrip Antenna with Narrow Annular Sectoral Patches for Wideband Response
By
Progress In Electromagnetics Research C, Vol. 114, 143-158, 2021
Abstract
Broadband variations of a proximity fed circular microstrip antenna gap-coupled with narrow annular sectoral patches are proposed. The gap-coupling of pairs of parasitic annular sectors along the x- and y-axes of the fed patch tunes the spacing in between the fundamental modes on the respective patches that yields wider bandwidth. A maximum bandwidth of 728 MHz (55%) offering peak gain of nearly 9 dBi is obtained in the circular patch gap-coupled with four pairs of annular sectors along the x-axis. This bandwidth is around 13% larger than the bandwidth offered by a single circular microstrip antenna. Instead of using multiple sectoral patches, a gap-coupled design of circular patch with a stub loaded annular sectoral patch is presented. The stub tunes TM02 mode frequency with reference to the fundamental modes on the circular and sectoral patches that yields bandwidth of 660 MHz (51%). Resonant length formulation and subsequent design methodology for all the proposed gap coupled configurations are presented, which helps in the re-designing of similar antennas at the given fundamental mode frequency. All the optimum and re-designed antennas are fabricated, and the measured results shows close agreement with the simulations.
Citation
Venkata A. P. Chavali, and Amit A. Deshmukh, "Multi-Resonator Variations of Circular Microstrip Antenna with Narrow Annular Sectoral Patches for Wideband Response," Progress In Electromagnetics Research C, Vol. 114, 143-158, 2021.
doi:10.2528/PIERC21061603
References

1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Wong, K. L., Compact and Broadband Microstrip Antennas, 1st Ed., John Wiley & sons, Inc., New York, USA, 2002.
doi:10.1002/0471221112

3. Sun, W., Y. Li, Z. Zhang, and Z. Feng, "Broadband and low-profile microstrip antenna using strip-slot hybrid structure," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3118-3121, 2017.
doi:10.1109/LAWP.2017.2763987

4. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, 2018.
doi:10.1109/TAP.2018.2885433

5. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703

6. Ray, K. P. and G. Kumar, "Multi-frequency and broadband hybrid coupled circular microstrip antennas," Electronics Letters, Vol. 33, No. 6, 437-438, 1997.
doi:10.1049/el:19970294

7. Yoo, J. and H. W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, September 2020.

8. Qian, J. F., F. C. Chen, Q. X. Chu, Q. Xue, and M. J. Lancaster, "A novel electric and magnetic gap-coupled broadband patch antenna with improved selectivity and its application in MIMO system," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5625-5629, 2018.
doi:10.1109/TAP.2018.2860129

9. Cao, Y., Y. Cai, W. Cao, B. Xi, Z. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, 2019.
doi:10.1109/LAWP.2019.2917909

10. Wi, S. H., Y. S. Lee, and J. G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1196-1199, 2007.
doi:10.1109/TAP.2007.893427

11. Kandwal, A. and S. K. Khah, "A novel design of gap-coupled sectoral patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 674-677, 2013.
doi:10.1109/LAWP.2013.2264103

12. Balaji, U., "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research, Vol. 84, 67-73, 2019.
doi:10.2528/PIERL19030507

13. Lu, H. X., F. Liu, M. Su, and Y. A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, 1-11, 2018.
doi:10.1002/mmce.21202

14. Wang, Z., J. Liu, and Y. Long, "A simple wide-bandwidth and high-gain microstrip patch antenna with both sides shorted," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1144-1148, 2019.
doi:10.1109/LAWP.2019.2911045

15. Sharma, V., V. K. Saxena, J. S. Saini, D. Bhatnagar, K. B. Sharma, and L. M. Joshi, "Broadband gap-coupled assembly of patches forming elliptical patch antenna," Microwave and Optical Technology Letters, Vol. 53, No. 2, 340-344, 2011.
doi:10.1002/mop.25693

16. Ding, K., C. Gao, B. Zhang, Y. Wu, and D. Qu, "A compact printed unidirectional broadband antenna with parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2341-2344, 2017.
doi:10.1109/LAWP.2017.2718000

17. Cao, Y., Y. Cai, W. Cao, Z. Qian, and L. Zhu, "Wideband microstrip patch antenna loaded with parasitic metal strips and coupling slots," IEICE Electronics Express, Vol. 15, No. 15, 1-8, 2018.
doi:10.1587/elex.15.20180671

18. Sharma, V. and M. M. Sharma, "Wideband gap coupled assembly of rectangular microstrip patches for Wi-Max applications," Frequenz, Vol. 68, No. 1-2, 25-31, 2014.
doi:10.1515/freq-2013-0053

19. Xu, K. D., H. Xu, Y. Liu, J. Li, and Q. H. Liu, "Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement," IEEE Access, Vol. 6, 11624-11633, 2018.
doi:10.1109/ACCESS.2018.2794962

20. Ray, K. P. and G. Kumar, "Multi-frequency and broadband hybrid coupled circular microstrip antennas," Electronics Letters, Vol. 33, No. 6, 437-438, 1997.
doi:10.1049/el:19970294

21. Kumar, G. and K. C. Gupta, "Broadband microstrip antennas using additional resonators gap coupled to the radiating edges," IEEE Transaction on Antennas and Propagation, Vol. 32, No. 12, 1375-1379, 1985.
doi:10.1109/TAP.1984.1143264

22. Li, M., Z. Zhang, and M. C. Tang, "A compact, low-profile, wideband, electrically-controlled, tripolarization- reconfigurable antenna with quadruple gap-coupled patches," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6395-6400, 2020.
doi:10.1109/TAP.2020.2970073

23. Aanandan, C. K., P. Mohanan, and K. G. Nair, "Broadband gap coupled microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1581-1586, 1990.
doi:10.1109/8.59771

24. Li, H., B. Lan, J. Ding, and C. Guo, "High gain low profile wideband dual-layered substrate microstrip antenna based on multiple parasitic elements," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 4, 453-459, 2018.
doi:10.1017/S1759078717001398

25. Chopra, R. and G. Kumar, "High gain broadband stacked triangular microstrip antennas," Microwave and Optical Technology Letters, 1-8, 2020.

26. Chopra, R. and G. Kumar, "Broadband and high gain multilayer multi resonator elliptical microstrip antenna," IET Microwaves, Antennas & Propagation, Vol. 14, No. 8, 821-829, 2020.
doi:10.1049/iet-map.2019.0186

27. Li, D., P. Guo, Q. Dai, and Y. Fu, "Broadband capacitively coupled stacked patch antenna for GNSS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 701-704, 2012.

28. Sun, D., W. Dou, L. You, X. Yan, and R. Shen, "A broadband proximity-coupled stacked microstrip antenna with cavity-backed configuration," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1055-1058, 2011.
doi:10.1109/LAWP.2011.2169389

29. Katyal, A. and A. Basu, "Compact and broadband stacked microstrip patch antenna for target scanning applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 381-384, 2016.

30. Sung, Y. J., "Microstrip resonator doubling as a filter and as an antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 467-470, 2010.
doi:10.1109/LAWP.2010.2050851

31. CST Microwave Studio suite, Version 2019.