Vol. 115
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-31
Using a 3D Metamaterial to Enhance the Surface Wave Propagation for High Frequency Over -the-Horizon Radars: from Simulation to Outdoor Measurements
By
Progress In Electromagnetics Research C, Vol. 115, 81-93, 2021
Abstract
This article is about the characterization of a 3D metamaterial structure arranged to reinforce the surface wave radiation of antennas relevant to High Frequency (HF) surface wave radars. The use of a corrugated surface with a negative equivalent permittivity placed in the vicinity of the antenna increases the surface wave component of the radiated field. In order to confirm the anticipated performance of that metamaterial antenna, near-field measurements have been realized. Also, an original near far-field transformation technique, taking the surface wave into account, is applied to derive the radiation pattern of the antenna. Measurements were first achieved at reduced scale in UHF band and at full scale in HF band. At 1.1 GHz, they were operated on a small scale mock-up in a semi-anechoic chamber. An electric field acquisition setup installed in an Unmanned Aerial Vehicle (UAV) is used to characterize this antenna under outdoor conditions. This measuring system was especially designed for this application. The obtained results are discussed and enable us to validate the expected behavior of the antenna.
Citation
Quentin Herbette, Nicolas Bourey, Michel Menelle, Muriel Darces, Stéphane Saillant, Yves Chatelon, and Marc Hélier, "Using a 3D Metamaterial to Enhance the Surface Wave Propagation for High Frequency Over -the-Horizon Radars: from Simulation to Outdoor Measurements," Progress In Electromagnetics Research C, Vol. 115, 81-93, 2021.
doi:10.2528/PIERC21061704
References

1. Ponsford, A., "Surveillance of the 200 nautical mile Exclusive Economic Zone (EEZ) using High Frequency Surface Wave Radar (HFSWR)," Canadian Journal of Remote Sensing, Vol. 27, No. 4, 354-360, 2001.
doi:10.1080/07038992.2001.10854877

2. Vesecky, J. F., K. E. Laws, and J. D. Paduan, "Using HF surface wave radar and the ship Automatic Identi cation System (AIS) to monitor coastal vessels," 2009 IEEE International Geoscience and Remote Sensing Symposium, Vol. 3, III-761-III-764, 2009.

3. Jangal, F. and M. Menelle, "French HFSWR contribution to the European integrated maritime surveillance system I2C," IET International Radar Conference 2015, 1-5, Oct. 2015.

4. Petrillo, L., F. Jangal, M. Darces, J.-L. Montmagnon, and M. Hélier, "Towards a better excitation of the surface wave," Progress In Electromagnetics Research M, Vol. 13, 17-28, 2010.
doi:10.2528/PIERM10041409

5. Herbette, Q., S. Saillant, M. Menelle, B. Urbani, N. Bourey, M. Darces, and M. Hélier, "HF Radar antenna near field assessment using a UAV," 2019 International Radar Conference (RADAR), 1-4, Sept. 2019.

6. Herbette, Q., N. Bourey, M. Menelle, M. Darces, S. Saillant, and M. Hélier, "Using a 3D metamaterial to enhance surface wave propagation in HF band," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Mar. 2021.

7. Payet, N., M. Darces, J.-L. Montmagnon, M. Hélier, and F. Jangal, "Near field to far field transformation by using equivalent sources in HF band," 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, 1-4, Jun. 2012.

8. Kistovich, Y. V., "On the possibility of observing surface zenneck waves in the radiation of a source with a small vertical aperture," Journal of Technical Physics, Vol. 59, No. 4, 16-21, 1989.

9. Jangal, F., L. Petrillo, M. Darces, M. Hélier, and J.-L. Montmagnon, "Inductive surface element,", Patent: EP2888784B1, Jul. 2015.

10. Elliott, R., "On the theory of corrugated plane surfaces," Transactions of the IRE Professional Group on Antennas and Propagation, Vol. 2, No. 2, 71-81, 1954.
doi:10.1109/T-AP.1954.27975

11. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, The Cambridge RF and Microwave Engineering Series, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

12. Rotman, W., "A study of single-surface corrugated guides," Proceedings of the IRE, Vol. 39, 952-959, Aug. 1951.
doi:10.1109/JRPROC.1951.273719

13. Garcia-Vidal, F. J., L. Martín-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, S97-S101, Jan. 2005.
doi:10.1088/1464-4258/7/2/013

14. Balageas, D. and P. Levesque, "EMIR: A photothermal tool for electromagnetic phenomena characterizatioon," Revue Générale de Thermique, Vol. 37, 725-739, Sept. 1998.
doi:10.1016/S0035-3159(98)80050-0

15. Bourey, N., M. Darces, and M. Hélier, "In situ antenna far field estimation based on equivalent sources," 2018 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 105-106, Jul. 2018.

16. Kortke, A. and W. Mann, "Near field scanning with optoelectronic e-field probes," 2009 3rd European Conference on Antennas and Propagation, 1725-1729, 2009.

17. Bannister, P. R., "New formulas that extend Norton's farfield elementary dipole equations to the quasi-nearfield range,", 1984.

18. Norton, K. A., "The propagation of radio waves over the surface of the earth and in the upper atmosphere," Proceedings of the Institute of Radio Engineers, Vol. 25, No. 9, 1203-1236, 1937.

19. Bourdi, T., J. E. Rhazi, F. Boone, and G. Ballivy, "Application of Jonscher model for the characterization of the dielectric permittivity of concrete," Journal of Physics D: Applied Physics, Vol. 41, 205-210, Oct. 2008.

20. Loewer, M., J. Igel, C. Minnich, and N. Wagner, "Electrical and dielectric properties of soils in the mHz to GHz frequency range," Proceedings of the 11th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), 247-254, 2016.