Vol. 115
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-19
A 28 GHz Surface-Mount Endfire Antenna Based on Ball Grid Array Packaging for 5G New Radio
By
Progress In Electromagnetics Research C, Vol. 115, 41-50, 2021
Abstract
In this article, a 28 GHz endfire antenna based on ball grid array (BGA) packaging is proposed for the 5G mmWave new radio (NR). The antenna is composed of a pair of dipole patches fed by a substrate integrated waveguide (SIW). Besides, quasi-coaxial vertical transition and transition from grounded coplanar waveguide (GCPW) to SIW are designed on the substrate to achieve compact size. The substrate is based on a single-layer printed circuit board (PCB), which can meet the cost-effectiveness requirements of the 5G application. Meanwhile, the proposed antenna can be easily integrated with other surface-mount devices by using the BGA packaging. In particular, it can be mounted near the RF front-end chipset to improve system performance. Finally, the prototype is manufactured and verified. Experimental results show that the -10 dB bandwidth of the proposed antenna is 5.35% in the range of 27.3 to 28.8 GHz, and the peak gain achieves 4.4 dBi at 29 GHz.
Citation
Xiubo Liu, Wei Zhang, Dongning Hao, and Yanyan Liu, "A 28 GHz Surface-Mount Endfire Antenna Based on Ball Grid Array Packaging for 5G New Radio," Progress In Electromagnetics Research C, Vol. 115, 41-50, 2021.
doi:10.2528/PIERC21070503
References

1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.
doi:10.1109/MCOM.2011.5783993

2. Andrews, J. G., et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

3. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

4. Hong, W., K. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6250-6261, Dec. 2017.
doi:10.1109/TAP.2017.2740963

5. Ying, Z., "Antennas in cellular phones for mobile communications," Proc. IEEE, Vol. 100, No. 7, 2286-2296, Jul. 2012.
doi:10.1109/JPROC.2012.2186214

6. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750

7. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Commun. Mag., Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454

8. Yin, J., Q. Wu, C. Yu, H. Wang, and W. Hong, "Broadband endfire magnetoelectric dipole antenna array using SICL feeding network for 5G millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 67, No. 7, 4895-4900, Jul. 2019.
doi:10.1109/TAP.2019.2916463

9. Mak, K.-M., K.-K. So, H.-W. Lai, and K.-M. Luk, "Magnetoelectric dipole leaky-wave antenna for millimeter-wave application," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6395-6402, Dec. 2017.
doi:10.1109/TAP.2017.2722868

10. Tang, M., T. Shi, and R. W. Ziolkowski, "A study of 28 GHz, planar, multilayered, electrically small, broadside radiating, huygens source antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6345-6354, Dec. 2017.
doi:10.1109/TAP.2017.2700888

11. Park, J., J. Ko, H. Kwon, B. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1685-1688, 2016.
doi:10.1109/LAWP.2016.2523514

12. Yu, B., K. Yang, C.-Y.-D. Sim, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, Jan. 2018.
doi:10.1109/TAP.2017.2772084

13. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW-fed all-metallic Vivaldi antennas with pattern diversity for millimeter wave 5G access points," Progress In Electromagnetics Research M, Vol. 94, 41-49, 2020.
doi:10.2528/PIERM20052003

14. Watanabe, A. O., M. Ali, S. Y. B. Sayeed, R. R. Tummala, and M. R. Pulugurtha, "A review of 5G front-end systems package integration," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 11, No. 1, 118-133, Jan. 2021.
doi:10.1109/TCPMT.2020.3041412

15. Zhang, Y., "Antenna-in-package technology: Its early development [historical corner]," IEEE Antennas Propag. Mag., Vol. 61, No. 3, 111-118, Jun. 2019.
doi:10.1109/MAP.2019.2907916

16. Zhang, Y. and J. Mao, "An overview of the development of antenna-in-package technology for highly integrated wireless devices," Proc. IEEE, Vol. 107, No. 11, 2265-2280, Nov. 2019.
doi:10.1109/JPROC.2019.2933267

17. Park, J., D. Choi, and W. Hong, "Millimeter-wave phased-array Antenna-in-Package (AiP) using stamped metal process for enhanced heat dissipation," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 11, 2355-2359, Nov. 2019.
doi:10.1109/LAWP.2019.2938229

18. Ahmad, Z. and J. Hesselbarth, "High-efficiency wideband surface-mount elevated 3-D patch antenna for millimeter waves," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 573-576, 2017.
doi:10.1109/LAWP.2017.2682962

19. Lin, W., R. W. Ziolkowski, and T. C. Baum, "28 GHz compact omnidirectional circularly polarized antenna for device-to-device communications in the future 5G systems," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6904-6914, Dec. 2017.
doi:10.1109/TAP.2017.2759899

20. Hong, W., K.-H. Baek, and A. Goudelev, "Multilayer antenna package for IEEE 802.11ad employing ultralow-cost FR4," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5932-5938, Dec. 2012.
doi:10.1109/TAP.2012.2214196

21. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, Dec. 2017.
doi:10.1109/TAP.2017.2722873

22. Park, J., H. Seong, Y. N. Whang, and W. Hong, "Energy-efficient 5G phased arrays incorporating vertically polarized end re planar folded slot antenna for mmWave mobile terminals," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 230-241, Jan. 2020.
doi:10.1109/TAP.2019.2930100

23. Zhang, Y. P., "Integration of microstrip patch antenna on ceramic ball grid array package," Electron. Lett., Vol. 38, No. 5, 207-208, Feb. 2002.
doi:10.1049/el:20020144

24. Zhang, Y. P., M. Sun, K. M. Chua, L. L. Wai, and D. X. Liu, "Integration of slot antenna in LTCC package for 60 GHz radios," Electron. Lett., Vol. 44, No. 5, 330-331, Feb. 2008.
doi:10.1049/el:20083352

25. Sun, M., Y. P. Zhang, K. M. Chua, L. L. Wai, D. Liu, and B. P. Gaucher, "Integration of Yagi antenna in LTCC package for differential 60-GHz radio," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2780-2783, Aug. 2008.
doi:10.1109/TAP.2008.927577

26. Watanabe, A. O., et al. "3D glass-based panel-level package with antenna and low-loss interconnects for millimeter-wave 5G applications," 2019 IEEE MTT-S International Microwave Conference on Hardware and Systems for 5G and Beyond (IMC-5G), 1-3, Aug. 2019.

27. Jin, C., V. N. Sekhar, X. Bao, B. Chen, B. Zheng, and R. Li, "Antenna-in-package design based on wafer-level packaging with through silicon via technology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 3, No. 9, 1498-1505, Sep. 2013.
doi:10.1109/TCPMT.2013.2261855

28. Huang, Y. and K. Boyle, Antennas: From Theory to Practice, 379, 2008.

29. Kangasvieri, T., J. Halme, J. Vahakangas, and M. Lahti, "Broadband BGA-via transitions for reliable RF/Microwave LTCC-SiP module packaging," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 1, 34-36, Jan. 2008.
doi:10.1109/LMWC.2007.911986