Vol. 116
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-05
Efficient Diplexer with High Selectivity and Low Insertion Loss Based on SOLR and DGS for WiMAX
By
Progress In Electromagnetics Research C, Vol. 116, 171-180, 2021
Abstract
In this paper, a highly efficient microstrip diplexer with low insertion loss, high selectivity, and high isolation is introduced. The proposed diplexer employed two compact size coupled squared open-loop resonator (SOLR) based band pass filters (BPFs). Firstly, a matching network is utilized to ensure that the two BPFs and the antenna load are properly matched. This is accomplished by connecting the two BPFs and the antenna with a conventional T-junction that acts as a combining circuit, resulting in good isolation between the up-link and down-link BPFs. As a second step, a defected ground structure (DGS) is used to improve the overall filter response in terms of insertion loss and isolation without affecting the diplexer selectivity. Based on this structure, the proposed diplexer has two resonance frequencies of 2.5 GHz and 2.8 GHz. The structure provides good insertion losses of about 1.6 and 1.3 dB for the two channels, respectively with fractional bandwidth of 2.8% at 2.5 GHz and 3.2% at 2.8 GHz. The measured isolation levels are 70 dB and 50 dB for 2.5 GHz and 2.8 GHz, respectively. The proposed diplexer is useful for several wireless communication applications such as WiMAX. The good agreements between simulated and measured results verified the practical validation of the proposed diplexer.
Citation
Asmaa E. Ammar Nessim Mahmoud Mohmoud Ahmed Attia Ali Amr Hussein Hussein Abdullah , "Efficient Diplexer with High Selectivity and Low Insertion Loss Based on SOLR and DGS for WiMAX ," Progress In Electromagnetics Research C, Vol. 116, 171-180, 2021.
doi:10.2528/PIERC21090104
http://www.jpier.org/PIERC/pier.php?paper=21090104
References

1. Tang, H. J., W. Hong, J.-X. Chen, G. Q. Luo, and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 776-782, 2007.
doi:10.1109/TMTT.2007.893655

2. Konpang, J., "A compact diplexer using square open loop with stepped impedance resonators," 2009 IEEE Radio and Wireless Symposium, 91-94, 2009.
doi:10.1109/RWS.2009.4957292

3. Duan, Q., K. Song, F. Chen, and Y. Fan, "Compact wide-stopband diplexer using dual mode resonators," Electronics Letters, Vol. 51, 1085-1087, 2015.
doi:10.1049/el.2015.0745

4. Yang, T., P.-L. Chi, and T. Itoh, "High isolation and compact diplexer using the hybrid resonators," IEEE Microwave and Wireless Components Letters, Vol. 20, 551-553, 2010.
doi:10.1109/LMWC.2010.2052793

5. Bui, D., T. Vuong, B. Allard, J. Verdier, and P. Benech, "Compact low-loss microstrip diplexer for RF energy harvesting," Electronics Letters, Vol. 53, 552-554, 2017.
doi:10.1049/el.2017.0022

6. Guan, X., F. Yang, H. Liu, and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, 385-387, 2014.
doi:10.1109/LMWC.2014.2313591

7. Xu, K. D., M. Li, Y. Liu, Y. Yang, and Q. H. Liu, "Design of triplexer using E-stub-loaded composite right-/left-handed resonators and quasi-lumped impedance matching network," IEEE Access, Vol. 6, 18814-18821, 2018.
doi:10.1109/ACCESS.2018.2819641

8. Li, M., K. D. Xu, J. Ai, and Y. Liu, "Compact diplexer using short stub-loaded composite right/left-handed resonators," Microwave and Optical Technology Letters, Vol. 59, 1470-1474, 2017.
doi:10.1002/mop.30565

9. Hong, J.-S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2099-2109, 1996.
doi:10.1109/22.543968

10. Cheng, F., C. Gu, B. Zhang, Y. Yang, and K. Huang, "High isolation substrate integrated waveguide diplexer with exible transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 30, 1029-1032, 2020.
doi:10.1109/LMWC.2020.3025698

11. Mahmoud, N., A. Barakat, M. Nasr, and R. K. Pokharel, "Performance enhancement of 60 GHz CMOS band pass filter employing oxide height virtual increase," Progress In Electromagnetics Research, Vol. 77, 125-134, 2019.
doi:10.2528/PIERM18101608

12. Hussein, A. H., H. H. Abdullah, M. A. Attia, and A. M. Abada, "S-band compact microstrip full-duplex tx/rx patch antenna with high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 2090-2094, 2019.
doi:10.1109/LAWP.2019.2937769

13. Sharma, R. Y., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502

14. Pandit, S., A. Mohan, P. Ray, and B. Rana, "Compact four-element MIMO antenna using DGS for WLAN Applications," 2018 International Symposium on Antennas and Propagation (ISAP), 1-2, 2018.

15. Lee, H., C.-T. M. Wu, and T. Itoh, "Study and analysis of contiguous channel triplexer based on combining method of two filtering circuits using CRLH and RH isolation circuits," International Journal of Microwave and Wireless Technologies, Vol. 6, 287-295, 2014.
doi:10.1017/S1759078714000178

16. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Vol. 167, John Wiley & Sons, 2004.

17. Yao, H.-W., A. E. Abdelmonem, J.-F. Liang, X.-P. Liang, K. A. Zaki, and A. Martin, "Wide-band waveguide and ridge waveguide T-junctions for diplexer applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 2166-2173, 1993.
doi:10.1109/22.260702

18. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 2017.
doi:10.1155/2017/2018527

19. Li, Q., Y. Zhang, and C. T. M. Wu, "Compact and high-isolation microstrip diplexer using distributed coupling feeding line," Microwave and Optical Technology Letters, Vol. 60, 192-196, 2018.
doi:10.1002/mop.30938

20. Xiao, J.-K., M. Zhu, Y. Li, L. Tian, and J.-G. Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, 781-783, 2015.
doi:10.1109/LMWC.2015.2495194

21. Tizyi, H., F. Riouch, A. Tribak, A. Najid, and A. Mediavilla, "Microstrip diplexer design based on two square open loop bandpass filters for RFID applications," International Journal of Microwave and Wireless Technologies, Vol. 10, 412, 2018.
doi:10.1017/S1759078718000314

22. Zhang, P., M.-H. Weng, and R.-Y. Yang, "A compact wideband diplexer using stub-loaded square ring resonators," Electromagnetics, Vol. 41, 167-184, 2021.
doi:10.1080/02726343.2021.1903204

23. Hassan, A. Y., M. F. Hagag, A. A. Abdel Aziz, and M. A. Abdalla, "A compact diplexer using coupled π-CRLH zeroth resonators," IETE Journal of Research, 1-8, 2021.
doi:10.1080/03772063.2021.1909505