Vol. 116
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-08
A Dual-Beam Switchable Self-Oscillating Ku-Band Active Array Antenna Integrating Positive Feedback Type Push-Push Oscillator and PSK Modulator
By
Progress In Electromagnetics Research C, Vol. 116, 181-192, 2021
Abstract
This paper proposes a dual-beam switchable self-oscillating active integrated array antenna for Ku-band wireless power transfer systems. The oscillation is sourced by a positive feedback type Push-Push oscillator, which shows an excellent measured output power of +9.3 dBm obtained at the second harmonic frequency as well as good suppression of the undesired harmonics. The generated RF power from the oscillator excites four patch antenna elements. Moreover, a PSK modulator is adopted for binary phase switching between 0˚ and 180˚. Using in/anti-phase RF signal combination of the antenna elements, it is possible to switch between two beams, sum and difference radiation patterns. The proposed structure is fabricated and tested; the measured results verify the dual-beam switching concept with an effective isotropic radiated power (EIRP) of +17.77 dBm, DC-to-RF efficiency of 0.43%, and an oscillator figure of merit (FOM) of -158.05 dBc/Hz at the second harmonic frequency of 14.7 GHz.
Citation
Maodudul Hasan Eisuke Nishiyama Takayuki Tanaka Ichihiko Toyoda , "A Dual-Beam Switchable Self-Oscillating Ku-Band Active Array Antenna Integrating Positive Feedback Type Push-Push Oscillator and PSK Modulator," Progress In Electromagnetics Research C, Vol. 116, 181-192, 2021.
doi:10.2528/PIERC21092801
http://www.jpier.org/PIERC/pier.php?paper=21092801
References

1. Chang, K., R. A. York, P. S. Hall, and T. Itoh, "Active integrated antennas," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 937-944, 2002.
doi:10.1109/22.989976

2. Qian, Y. and T. Itoh, "Progress in active integrated antennas and their applications," IEEE Trans. Microw. Theory Techn., Vol. 46, No. 11, 1891-1900, 1998.
doi:10.1109/22.734506

3. Toyoda, I., Y. Furukawa, E. Nishiyama, T. Tanaka, and M. Aikawa, "Polarization agile self-oscillating active integrated antenna for spatial modulation wireless communications," Electron Comm. Jpn., Vol. 101, No. 11, 37-44, 2018.
doi:10.1002/ecj.12123

4. Hasan, M., E. Nishiyama, and I. Toyoda, "A polarization switchable active integrated array antenna with a single-lambda slot-ring Gunn oscillator and PSK modulator," IEICE Comm. Express, Vol. 8, No. 12, 560-565, 2019.
doi:10.1587/comex.2019GCL0044

5.. Hasan, M., H. Ushiroda, E. Nishiyama, and I. Toyoda, "A polarization switchable active array antenna integrating a multiport oscillator and PSK modulators," Proc. 2018 Asia-Pacific Microw. Conf. (APMC 2018), 1253-1255, Kyoto, Japan, 2018.

6. Hasan, M., E. Nishiyama, and I. Toyoda, "A microstrip-line Gunn oscillator loaded active integrated array antenna using inclined patches for polarization switching function," Proc. 2020 Int. Symp. Antennas Propag. (ISAP 2020), 797-798, Osaka, Japan (Virtual), 2021.

7. Hasan, M., E. Nishiyama, and I. Toyoda, "A beam switchable self-oscillating active integrated array antenna using Gunn oscillator and magic-Ts," EICE Trans. Commun., Vol. E104-B, No. 11, 2021.

8. Wu, C. and T. Ma, "Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 5992-5999, 2014.
doi:10.1109/TAP.2014.2361897

9. Singh, R. K., A. Basu, and S. K. Koul, "A novel pattern-reconfigurable oscillating active integrated antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3220-3223, 2017.
doi:10.1109/LAWP.2017.2769798

10. Xiao, S., Z. Shao, and M. Fujise, "Pattern reconfigurable millimeter wave microstrip quasi-Yagi active antenna," Proc. 2005 Asia-Pacific Microw. Conf. (APMC 2005), Suzhou, China, 2005.

11. Liu, Z., Y. Chang, and T. Ma, "High-efficiency self-oscillating active integrated antenna using metamaterial resonators and its application to multicarrier radio frequency identification systems," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3803-3810, 2016.
doi:10.1109/TAP.2016.2589959

12. Minegishi, M., J. Lin, T. Itoh, and S. Kawasaki, "Control of mode-switching in an active antenna using MESFET," IEEE Trans. Microw. Theory Techn., Vol. 43, No. 8, 1869-1874, 1995.
doi:10.1109/22.402275

13. Chew, S. T. and T. Itoh, "A 2 × 2 beam-switching active antenna array," Proc. 1995 IEEE MTT-S Int. Microw. Symp. Dig. (IMS 1995), Vol. 2, 925-928, Orlando, FL, USA, 1995.

14. Singh, R. K., A. Basu, and S. K. Koul, "Reconfigurable oscillating active integrated antenna using two-element patch array for beam switching applications," Engineering Reports, Vol. 1, No. 7, e12071, 2019.

15. Lin, J., T. Itoh, and S. Nogi, "Mode switch in a two-element active array," 1993 IEEE Antennas Propag. Soc. and Int. Symp. Dig. (AP-S 1993), 664-667, Ann Arbor, MI, USA, 1993.

16. Hasan, M., E. Nishiyama, T. Tanaka, and I. Toyoda, "Design of dual-beam switchable self- oscillating active array antenna integrating positive feedback type Push-Push oscillator and PSK modulator," Proc. 2020 Int. Conf. Emerg. Tech. for Comm. (ICETC 2020), A4-A5, Japan (Virtual), 2020.

17. Lin, Y. and T. Ma, "Frequency-reconfigurable self-oscillating active antenna with gap-loaded ring radiator," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 337-340, 2013.
doi:10.1109/LAWP.2013.2250475

18. Tanaka, T., H. Otani, and M. Aikawa, "Microwave transmitter module integrating slot array antenna, Push-Push oscillator and PSK modulator," Proc. 2010 Asia-Pacific Microw. Conf. (APMC 2010), 1023-1026, Yokohama, Japan, 2010.

19. Lima, E., T. Tanaka, and I. Toyoda, "A novel low phase noise Push-Push oscillator employing dual-feedback sub-oscillators," Progress In Electromagnetics Research M, Vol. 75, 141-148, 2018.
doi:10.2528/PIERM18080701

20. Dong, Y. and T. Itoh, "Planar ultra-wideband antennas in Ku- and K-band for pattern or polarization diversity applications," IEEE Trans. Antennas Propag., Vol. 60, No. 6, 2886-2895, 2012.
doi:10.1109/TAP.2012.2194680

21. Kawahata, K., T. Tanaka, and M. Aikawa, "A K-band Push-Push oscillator with high suppression of undesired harmonic signals," IEICE Trans. Electron., Vol. E86-C, No. 8, 1433-1437, 2003.

22. Shairi, N. A., B. H. Ahmad, and P. W. Wong, "Bandstop to allpass reconfigurable filter technique in SPDT switch design," Progress In Electromagnetics Research C, Vol. 39, 265-277, 2013.
doi:10.2528/PIERC13040313

23. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, Hoboken, NJ, 2005.