Vol. 117

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-12-17

Accurate Fault Location for Long-Distance Electric Transmission Lines

By Lihui Zhao, Jingwei Zhu, Hongzhe Yang, and Tianhuai Qiao
Progress In Electromagnetics Research C, Vol. 117, 41-54, 2021
doi:10.2528/PIERC21092906

Abstract

This paper, using the distributed parameter line model, presents an accurate fault location method based on fundamental frequency positive sequence fault components for EHV transmission line. The method based on positive sequence fault components Extra-High Voltage (EHV) electric transmission line. The method based on the positive sequence fault component is robust to the operating state of the prefault system and fault path resistance. The technique proposed in the paper does not require the fault type, fault phase, and the zero-sequence parameter to be obtained in advance. In addition, due to the use of fault component protection theory, the algorithm itself is not a ected by the previous operating state of the system. The method uses a distributed parameter model, which is more accurate in positioning and smaller in error than a lumped parameter model by a large number of simulations. Accurate fault location is important for shortening the fault time and reducing the loss of the fault, so the positioning method proposed can improve the power supply quality and safety. This paper describes the characteristics of the proposed technique and assesses its performance by using Power Systems Computer Aided Design/Electromagnetic Transients including DC (PSCAD/EMTDC).

Citation


Lihui Zhao, Jingwei Zhu, Hongzhe Yang, and Tianhuai Qiao, "Accurate Fault Location for Long-Distance Electric Transmission Lines," Progress In Electromagnetics Research C, Vol. 117, 41-54, 2021.
doi:10.2528/PIERC21092906
http://www.jpier.org/PIERC/pier.php?paper=21092906

References


    1. Phadke, A. G., M. Izumi, M. Yokoyama, K. Umemoto, T. Hlibka, and M. Ibrahim, "Fundamental basis for distance relaying with symmetrical components," IEEE Trans. Power App. Syst., Vol. 96, No. 3, 635-646, 1977.
    doi:10.1109/T-PAS.1977.32375

    2. Kezunovic, M. and B. Perunicic, "Automated transmission line fault analysis using synchronized sampling at two end," IEEE Trans. Power Del., Vol. 11, No. 1, 121-129, 1988.

    3. Takagi, T., Y. Yamakoshi, J. Baba, K. Uemura, and T. Sakaguchi, "A new algorithm of an accurate fault location for EHV/UHV transmission lines: PART I -- Fourier transformation method," IEEE Trans. Power App. Syst., Vol. 3, No. 3, 1316-1323, 1981.
    doi:10.1109/TPAS.1981.316604

    4. Lopes, F., K. M. Dantas, K. M. Silva, and F. B. Costa, "Accurate two-terminal transmission line fault location using traveling waves," IEEE Trans. Power Del., Vol. 33, No. 2, 873-880, 2018.
    doi:10.1109/TPWRD.2017.2711262

    5. Liao, Y. and S. Elangovan, "Improved symmetrical component-based fault distance estimation for digital distance protection," IEE Proc. Gener. Transm. Distrib., Vol. 145, No. 6, 739-746, 1998.
    doi:10.1049/ip-gtd:19982366

    6. Apostolopoulos, C. A. and G. N. Korres, "A novel algorithm for locating faults on transposed/untransposed transmission lines without utilizing line parameters," IEEE Trans. Power Del., Vol. 6, No. 2, 2328-2338, 2010.
    doi:10.1109/TPWRD.2010.2053223

    7. Kawady, T. and J. Stenzel, "A practical fault location approach for double circuit transmission lines using single end data," IEEE Trans. Power Del., Vol. 18, No. 4, 1166-1173, 2003.
    doi:10.1109/TPWRD.2003.817503

    8. Livani, H. and C. Y. Evrenosoglu, "A machine learning and wavelet-based fault location method for hybrid transmission lines," IEEE Trans. Smart Grid, Vol. 5, No. 1, 51-58, 2014.
    doi:10.1109/TSG.2013.2260421

    9. Terzija, V., Z. M. Radojevic, and G. Preston, "Flexible synchronized measurement technology-based fault locator," IEEE Trans. Smart Grid, Vol. 6, No. 2, 866-873, 2015.
    doi:10.1109/TSG.2014.2367820

    10. Elsadd, M. A. and A. Y. Abdelaziz, "Unsynchronized fault-location technique for two- and three-terminal transmission lines," Electric Power Systems Research, Vol. 158, 228-239, 2018.
    doi:10.1016/j.epsr.2018.01.010

    11. Elkalashy, N., T. A. Kawady, W. M. Khater, and A. M. I. Taalab, "Unsynchronized fault-location technique for double-circuit transmission systems independent of line parameters," IEEE Trans. Power Del., Vol. 99, No. 4, 1591-1599, 2015.
    doi:10.1109/TPWRD.2015.2472638

    12. Zhang, Y., J. Liang, Z. H. Yun, and X. M. Dong, "A new fault-location algorithm for series-compensated double-circuit transmission lines based on the distributed parameter model," IEEE Trans. Power Del., Vol. 33, No. 6, 3249-3251, 2018.
    doi:10.1109/TPWRD.2018.2838344

    13. Xu, Z., Z. Q. Du, L. Ran, Y. K. Wu, and Q. X. Yang, "A current differential relay for a 1000-kV UHV transmission line," IEEE Trans. Power Del., Vol. 19, No. 4, 1392-1399, 2007.
    doi:10.1109/TPWRD.2007.900274

    14. Lin, Y., C. W. Liu, and C. S. Chen, "A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination --- Part I: Theory and algorithms," IEEE Trans. Smart Grid, Vol. 19, No. 4, 1588-1593, 2004.

    15. Lee, Y., C. H. Chao, T. C. Lin, and C. W. Liu, "synchro phasor-based fault location method for three-terminal hybrid transmission lines with one off-service line branch," IEEE Trans. Power Del., Vol. 33, No. 6, 3249-3251, 2018.
    doi:10.1109/TPWRD.2018.2840958

    16. Terzija, V., Z. M. Radojevic, and G. Preston, "Flexible synchronized measurement technology-based fault locator," IEEE Trans. Smart Grid, Vol. 6, No. 2, 866-873, 2015.
    doi:10.1109/TSG.2014.2367820

    17. Zhao, L., J. W. Zhu, and B. Gu, "A new technique based on fundamental frequency positive sequence fault components for fault location," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, 536-543, 2020.
    doi:10.1002/tee.23086