Vol. 117
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-04
Frequency Diverse ISAR Two-Dimensional Imaging Method and Resolution Analysis
By
Progress In Electromagnetics Research C, Vol. 117, 185-201, 2021
Abstract
Aiming at the shortcomings of complex broadband transmitter/receiver systems and inflexible bandwidth control in the existing inverse synthetic aperture radar (ISAR) imaging systems, in this paper, a novel two-dimensional imaging method based on frequency diverse ISAR (FDISAR) is proposed by combining frequency diversity technique with inverse synthetic aperture technique. In the imaging process, FDISAR is different from the stepped-frequency ISAR, which needs to transmit the same burst at different observation moments. Once the bandwidth is determined, the bandwidth of the subsequent burst synthesis cannot be changed, which reduces the flexibility of the radar system. In this method, single-frequency signals of different frequencies are transmitted to the target at different observation times, and the wideband signals are synthesized using the frequencies at different observation times to obtain the resolution capability in the range direction. In addition, the relative motion synthetic aperture of the target and radar is used to obtain the azimuth resolution capability, and finally the two-dimensional imaging capability of the moving target is formed. Specifically, we established an ISAR imaging model based on frequency diversity to synthesize a broadband signal, and used an improved backward projection algorithm (BP) to complete the two-dimensional imaging of the target. On this basis, the influence of the transmission signal frequency selection on the imaging quality is analyzed, and the half-power resolution in range and azimuth directions is derived. Furthermore, in order to eliminate side lobes and improve imaging quality, we combined compressive sensing (CS) theory with a BP imaging algorithm based on compressed sensing to obtain high-quality target 2D images. Simulation and actual measurement results show that FDISAR can achieve two-dimensional imaging of moving multi-scattering point targets. The application of this method is of great significance for reducing the complexity of the ISAR imaging system and improving the flexibility of the system's control bandwidth resources.
Citation
Xiu-Ping Li, Kefei Liao, and Bo Wen, "Frequency Diverse ISAR Two-Dimensional Imaging Method and Resolution Analysis," Progress In Electromagnetics Research C, Vol. 117, 185-201, 2021.
doi:10.2528/PIERC21101201
References

1. Zuo, L. and B. Wang, "ISAR imaging of non-uniform rotating targets based on optimized matching fourier transform," IEEE Access, Vol. 8, 64324-64330, 2020.
doi:10.1109/ACCESS.2020.2984487

2. Kang, B. S., K. Lee, and K. T. Kim, "Image registration for 3-D interferometric-ISAR imaging through joint-channel phase difference functions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 57, No. 1, 22-38, 2021.
doi:10.1109/TAES.2020.3021108

3. Hu, C., L. Wang, Z. Li, and D. Zhu, "Inverse synthetic aperture radar imaging using a fully convolutional neural network," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 7, 1203-1207, 2020.
doi:10.1109/LGRS.2019.2943069

4. Cheng, P., J. Cheng, X. Wang, and J. Zhao, "An ISAR imaging method based on improved CAMP algorithm," IEEE Sensors Journal, Vol. 21, No. 12, 13514-13521, 2021.
doi:10.1109/JSEN.2021.3068281

5. Stankovic, L., "ISAR image analysis and recovery with unavailable or heavily corrupted data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 3, 2093-2106, 2015.
doi:10.1109/TAES.2015.140413

6. Ji, B., Y. Wang, B. Zhao, X. Lu, and R. Xu, "Novel super-resolution ISAR imaging method via two-dimensional unitary matrix pencil algorithm," 2020 15th IEEE International Conference on Signal Processing (ICSP), Vol. 1, 600-604, 2020.
doi:10.1109/ICSP48669.2020.9321092

7. Zhang, S., Y. Liu, and X. Li, "Bayesian bistatic ISAR imaging for targets with complex motion under low SNR condition," IEEE Transactions on Image Processing, Vol. 27, No. 5, 2447-2460, 2018.
doi:10.1109/TIP.2018.2803300

8. Zhang, S., Y. Liu, X. Li, and G. Bi, "Fast ISAR cross-range scaling using modified newton method," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 3, 1355-1367, 2018.
doi:10.1109/TAES.2017.2785560

9. Hu, J., J. Zhang, Q. Zhai, R. Zhan, and D. Lu, "ISAR imaging using a new stepped-frequency signal format," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 7, 4291-4305, 2014.
doi:10.1109/TGRS.2013.2281072

10. Zhang, L., Z. Qiao, M. Xing, Y. Li, and Z. Bao, "High-resolution ISAR imaging with sparse stepped-frequency waveforms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 11, 4630-4651, 2011.
doi:10.1109/TGRS.2011.2151865

11. Yeh, C. M., et al. "Rotational motion estimation for ISAR via triangle pose difference on two range-Doppler images," IET Radar Sonar & Navigation, Vol. 4, No. 4, 528-536, 2010.
doi:10.1049/iet-rsn.2009.0042

12. Berizzi, F., E. D. Mese, M. Diani, and M. Martorella, "High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: Modeling and performance analysis," IEEE Transactions on Image Processing, Vol. 10, No. 12, 1880-1890, 2001.
doi:10.1109/83.974573

13. Munoz-Ferreras, J. M. and F. Perez-Martinez, "On the Doppler spreading effect for the range-instantaneous-doppler technique in inverse synthetic aperture radar imagery," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 1, 180-184, 2010.
doi:10.1109/LGRS.2009.2030372

14. Wang, Y. and Y. Lin, "ISAR imaging of non-uniformly rotating target via range-instantaneous-Doppler-derivatives algorithm," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, No. 1, 167-176, 2014.
doi:10.1109/JSTARS.2013.2257699

15. Liu, Q., A. Liu, Y. Wang, and H. Li, "A super-resolution sparse aperture ISAR sensors imaging algorithm via the MUSIC technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 9, 7119-7134, 2019.
doi:10.1109/TGRS.2019.2911686

16. Zhang, S., et al. "High-resolution bistatic ISAR imaging based on two-dimensional compressed sensing," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2098-2111, 2015.
doi:10.1109/TAP.2015.2408337

17. Jiu, B., H. Liu, H. Liu, L. Zhang, Y. Cong, and Z. Bao, "Joint ISAR imaging and cross-range scaling method based on compressive sensing with adaptive dictionary," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2112-2121, 2015.
doi:10.1109/TAP.2015.2409876

18. Rodenbeck, C. T., et al. "Ultra-wideband low-cost phased-array radars," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3697-3703, 2005.
doi:10.1109/TMTT.2005.856668

19. Zhang, L., Z. Qiao, M. Xing, J. Sheng, R. Guo, and Z. Bao, "High-resolution ISAR imaging by exploiting sparse apertures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 997-1008, 2012.
doi:10.1109/TAP.2011.2173130

20. Zheng, J., T. Su, W. Zhu, L. Zhang, Z. Liu, and Q. H. Liu, "ISAR imaging of nonuniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 9, 4727-4740, 2015.
doi:10.1109/TGRS.2015.2408350

21. Kang, M., S. Lee, S. Lee, and K. Kim, "ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing," IEEE Transactions on Image Processing, Vol. 26, No. 10, 5043-5056, 2017.
doi:10.1109/TIP.2017.2728182

22. Fan, H., L. Ren, E. Mao, and Q. Liu, "A high-precision method of phase-derived velocity measurement and its application in motion compensation of ISAR imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 1, 60-77, 2018.
doi:10.1109/TGRS.2017.2733579

23. Chen, Y., et al. "An adaptive ISAR-imaging-considered task scheduling algorithm for multi-function phased array radars," IEEE Transactions on Signal Processing, Vol. 63, No. 19, 5096-5110, 2015.
doi:10.1109/TSP.2015.2449251

24. Xiong, J., W. Wang, and K. Gao, "FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 1, 284-294, 2018.
doi:10.1109/TAES.2017.2756498

25. Xu, J., G. Liao, S. Zhu, L. Huang, and H. C. So, "Joint range and angle estimation using MIMO radar with frequency diverse array," IEEE Transactions on Signal Processing, Vol. 63, No. 13, 3396-3410, 2015.
doi:10.1109/TSP.2015.2422680

26. Ma, Y., P. Wei, and H. Zhang, "General focusing beamformer for FDA: Mathematical model and resolution analysis," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 089-3100, 2019.

27. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

28. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

29. Potter, L. C., et al. "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, No. 6, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526

30. Rong, J., Y. Wang, and T. Han, "Iterative optimization-based ISAR imaging with sparse aperture and its application in interferometric ISAR imaging," IEEE Sensors Journal, Vol. 19, No. 19, 8681-8693, 2019.
doi:10.1109/JSEN.2019.2923447

31. Elad, M., "Optimized projections for compressed sensing," IEEE Transactions on Signal Processing, Vol. 55, No. 12, 5695-5702, 2007.
doi:10.1109/TSP.2007.900760