Vol. 117

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-07

Millimeter Wave Switched Beam Rectangular Loop Dipole Antenna Array Using a 4×4 Butler Matrix

By Kunooru Bharath, Srujana Vahini Nandigama, Rama Krishna Dasari, Mahesh Pandurang Abegaonkar, and Vijay M. Pandharipande
Progress In Electromagnetics Research C, Vol. 117, 251-260, 2021
doi:10.2528/PIERC21103003

Abstract

A four-stage switched beam antenna array at millimeter-wave (mm-wave) frequencies is designed, fabricated, and experimental results are demonstrated. A novel rectangular loop dipole antenna (RLDA) applying the quasi Yagi-Uda concept is designed to achieve high gain and wide bandwidth with end-fire radiation. This RLDA with director has a return loss better than 10 dB over a frequency range of 32 GHz to 37 GHz and a peak gain of 8.5 dB. The proposed high gain end-fire RLDA antenna in combination with a 4x4 Butler Matrix(BM) creates the switched beam configuration and generates four beams in the directions of 15˚±2˚, -45˚±4˚, 38˚±2˚, and -15˚±1˚ at 33.5 GHz, 34.5 GHz, and 35.5 GHz with successive input port excitation. The switched beam configuration has overall dimensions at 34.5 GHz is 26 mm x 25.8 mm (3.03λ x 3.0λ).

Citation


Kunooru Bharath, Srujana Vahini Nandigama, Rama Krishna Dasari, Mahesh Pandurang Abegaonkar, and Vijay M. Pandharipande, "Millimeter Wave Switched Beam Rectangular Loop Dipole Antenna Array Using a 4×4 Butler Matrix," Progress In Electromagnetics Research C, Vol. 117, 251-260, 2021.
doi:10.2528/PIERC21103003
http://www.jpier.org/PIERC/pier.php?paper=21103003

References


    1. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
    doi:10.1109/ACCESS.2013.2260813

    2. Abumunshar, A. J., K. Sertel, and N. K. Nahar, "Millimeter-wave tightly-coupled phased array with integrated MEMS phase shifters," Progress In Electromagnetics Research C, Vol. 110, 135-150, 2021.
    doi:10.2528/PIERC20113004

    3. Dadgarpour, B. Z., B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2874-2879, May 2014, doi: 10.1109/TAP.2014.2308516.
    doi:10.1109/TAP.2014.2308516

    4. Mantash, M., A. Kesavan, and T. A. Denidni, "Beam-tilting endfire antenna using a single-layer FSS for 5G communication networks," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 29-33, Jan. 2018, doi: 10.1109/LAWP.2017.2772222.
    doi:10.1109/LAWP.2017.2772222

    5. Dale Ake, W., M. Pour, and A. Mehrabani, "Asymmetric half-bowtie antennas with tilted beam patterns," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 738-744, Feb. 2019, doi: 10.1109/TAP.2018.2880078.
    doi:10.1109/TAP.2018.2880078

    6. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 225-232, Feb. 2002, doi: 10.1109/8.997999.
    doi:10.1109/8.997999

    7. Fakoukakis, F. and G. Kyriacou, "Novel nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
    doi:10.2528/PIERB13011605

    8. Rahimian, A., Y. Alfadhl, and A. Alomainy, "Design and performance analysis of millimetre-wave Rotman lens-based array beamforming networks for large-scale antenna subsystems," Progress In Electromagnetics Research C, Vol. 78, 159-171, 2017.
    doi:10.2528/PIERC17071703

    9. Lian, J., Y. Ban, Z. Chen, B. Fu, and C. Xiao, "SIW folded Cassegrain lens for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 4, 583-586, Apr. 2018, doi: 10.1109/LAWP.2018.2804923.
    doi:10.1109/LAWP.2018.2804923

    10. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 12, 1961.

    11. Panduro, M. A. and C. del Rio-Bocio, "Simplifying the feeding network for multibeam circular antenna arrays by using corps," Progress In Electromagnetics Research Letters, Vol. 21, 119-128, 2011.
    doi:10.2528/PIERL11010205

    12. Panduro, M. A. and C. del Ro-Bocio, "Design of beam-forming networks using CORPS and evolutionary optimization," International Journal of Electronics and Communications, Vol. 63, No. 5, 353-365, 2009, doi: 10.1016/j.aeue.2008.02.009.
    doi:10.1016/j.aeue.2008.02.009

    13. Panduro, M. A. and C. del Río-Bocio, "Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
    doi:10.2528/PIER08070403

    14. Juárez, E., M. A. Panduro, A. Reyna, D. H. Covarrubias, A. Mendez, and E. Murillo, "Design of concentric ring antenna arrays based on subarrays to simplify the feeding system," Symmetry, Vol. 12, No. 6, 970, Jun. 2020, https://doi.org/10.3390/sym12060970.
    doi:10.3390/sym12060970

    15. Tseng, C., C. Chen, and T. Chu, "A low-cost 60-GHz switched-beam patch antenna array with butler matrix network," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 432-435, 2008, doi: 10.1109/LAWP.2008.2001849.
    doi:10.1109/LAWP.2008.2001849

    16. Karamzadeh, S., V. Rafiei, and M. Kartal, "Beam steering fabry perot array antenna for MM-wave application," Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020.
    doi:10.2528/PIERM20020101

    17. Ashraf, N., A.-R. Sebak, and A. A. Kishk, "PMC packaged single-substrate 4 × 4 butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 248-261, Jan. 2021, doi: 10.1109/TMTT.2020.3022092.
    doi:10.1109/TMTT.2020.3022092

    18. Trinh-Van, S., J. M. Lee, Y. Yang, K. Lee, and K. C. Hwang, "A sidelobe-reduced, four-beam array antenna fed by a modified 4 × 4 butler matrix for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4528-4536, Jul. 2019, doi: 10.1109/TAP.2019.2905783.
    doi:10.1109/TAP.2019.2905783

    19. Lian, J., Y. Ban, C. Xiao, and Z. Yu, "Compact substrate-integrated 4 × 8 butler matrix with sidelobe suppression for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 928-932, May 2018, doi: 10.1109/LAWP.2018.2825367.
    doi:10.1109/LAWP.2018.2825367

    20. Cao, Y., K. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/LAWP.2017.2757045.
    doi:10.1109/LAWP.2017.2757045

    21. Balanis, C. A., Antenna Theory --- Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.