Vol. 117

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-06

Design of a Coplanar UWB-MIMO Ground Antenna Based on the Theory of Characteristic Modes

By Zhi-Jun Tang, Jie Zhan, Bin Zhong, Long Cheng, and Guocai Zuo
Progress In Electromagnetics Research C, Vol. 117, 221-237, 2021
doi:10.2528/PIERC21111203

Abstract

A novel two-element UWB-MIMO ground antenna is designed by using the theory of characteristic modes. The proposed antenna has a simple and compact coplanar structure, which consists of a rectangular metal ground, a four-stage stepped patch, a double L-shaped patch with a corner cut and a rectangular substrate. By analyzing the most relevant characteristic modes of the metal ground in UWB, the expected characteristic modes are excited by the capacitive coupling elements and the hybrid loading of the capacitive and inductive coupling elements, so as to reduce the size, broaden the bandwidth and improve the isolation. The simulated and measured results show that the proposed antenna obtains ultra-wide impedance bandwidths (2.7-12.6 GHz for Port 1 and 3.0-11.0 GHz for Port 2). Furthermore, the proposed antenna also achieves high gains (3.1-7.3 dBi for Port 1 and 2.7-5.8 dBi for Port 2), stable radiation patterns and good diversity characteristics (the minimum isolation > 16 dB, the envelope correlation coefficient < 0.01, the channel capacity loss < 0.08 bps/Hz, and the total active reflection coefficient < -4.1 dB, etc.) in the whole impedance bandwidth. The research results can provide a useful reference for the design of UWB-MIMO ground antennas based on the theory of characteristic modes.

Citation


Zhi-Jun Tang, Jie Zhan, Bin Zhong, Long Cheng, and Guocai Zuo, "Design of a Coplanar UWB-MIMO Ground Antenna Based on the Theory of Characteristic Modes," Progress In Electromagnetics Research C, Vol. 117, 221-237, 2021.
doi:10.2528/PIERC21111203
http://www.jpier.org/PIERC/pier.php?paper=21111203

References


    1. Li, M. J. and N. Behdad, "A compact, capacitively fed UWB antenna with monopole-like radiation characteristics," IEEE Trans. Antennas Propag., Vol. 65, 1026-1035, 2017.
    doi:10.1109/TAP.2016.2641925

    2. Liu, J. L., J. P. Geng, and K. Wang, "A low-profile, directional, ultrawideband antenna," IEEE Antennas Wireless Propag. Lett., Vol. 18, 255-259, 2019.
    doi:10.1109/LAWP.2018.2888579

    3. Tang, Z., X. F. Wu, and J. Zhan, "A novel miniaturized antenna with multiple band notched characteristics for UWB communication applications," Journal of Electromagnetic Waves and Applications, Vol. 32, 1961-1972, 2018.
    doi:10.1080/09205071.2018.1486235

    4. Nie, L. Y., X. Q. Lin, and Z. Q. Yang, "Structure-shared planar UWB MIMO antenna with high isolation for mobile plat-form," IEEE Trans. Antennas Propag., Vol. 67, 2735-2738, 2019.
    doi:10.1109/TAP.2018.2889596

    5. Tang, Z. J., J. Zhan, and X. F. Wu, "Simple ultra-wider bandwidth MIMO antenna integrated by double decoupling branches and square-ring ground structure," Microw. Opt. Technol. Lett., Vol. 62, 1259-1266, 2020.
    doi:10.1002/mop.32122

    6. Zhao, X. W., R. Sharjeel, and S. Y. Geng, "A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications," IEEE Access, Vol. 7, 46739-46747, 2019.
    doi:10.1109/ACCESS.2019.2909810

    7. Liu, Y. Y. and Z. H. Tu, "Compact differential band-notched stepped-slot UWB-MIMO antenna with common-mode suppression," IEEE Antennas Wireless Propag. Lett., Vol. 16, 593-595, 2017.
    doi:10.1109/LAWP.2016.2592179

    8. Yu, C. Y., S. H. Yang, and Y. C. Chen, "A super-wideband and high isolation MIMO antenna system using a wind-mill-shaped decoupling structure," IEEE Access, Vol. 8, 115767-115777, 2020.
    doi:10.1109/ACCESS.2020.3004396

    9. Li, Y. S., W. X. Li, and Q. B. Ye, "A reconfigurable triple-notch-band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications," International Journal of Antennas and Propag., Vol. 7, 1-13, 2013.

    10. Mao, C. X. and Q. X. Chu, "Compact coradiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, 4474-4480, 2014.
    doi:10.1109/TAP.2014.2333066

    11. Li, J. F., Q. X. Chu, and Z. H. Li, "Compact dual band-notched UWB MIMO antenna with high isolation," IEEE Trans. Antennas Propag., Vol. 61, 4759-4766, 2013.
    doi:10.1109/TAP.2013.2267653

    12. Zhang, J., L. Wang, and W. Zhang, "A novel dual band-notched CPW-fed UWB MIMO antenna with mutual coupling reduction characteristics," Progress In Electromagnetics Research Letters, Vol. 90, 21-28, 2020.
    doi:10.2528/PIERL19122703

    13. Tang, X., Z. Yao, and Y. Li, "A high performance UWB MIMO antenna with defected ground structure and U-shape branches," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, 22270-22283, 2020.

    14. Tang, Z. J., J. Zhan, and X. F. Wu, "Design of a compact UWB MIMO antenna with high isolation and dual band notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 34, 500-513, 2020.
    doi:10.1080/09205071.2020.1724200

    15. Lin, G. S., C. H. Sung, and J. L. Chen, "Isolation improvement in UWB MIMO antenna system using carbon black film," IEEE Antennas Wireless Propag. Lett., Vol. 16, 222-225, 2016.
    doi:10.1109/LAWP.2016.2570301

    16. Mathur, R. and S. Dwari, "Compact CPW-Fed ultra wideband MIMO antenna using hexagonal ring monopole antenna elements," AEU-Int. J. Electron. Commun., Vol. 93, 1-6, 2018.
    doi:10.1016/j.aeue.2018.05.032

    17. Wang, Y. H., Y. J. Yang, and Q. X. Chi, "Design of a compact ultra-wideband MIMO antenna," The Journal of Engineering, Vol. 20, 6487-6489, 2019.

    18. Gunjan, S. and M. Akhilesh, "Compact MIMO slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1057-1060, 2015.

    19. Luo, C. M., J. S. Hong, and L. L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1766-1769, 2015.
    doi:10.1109/LAWP.2015.2423318

    20. Rohit, G., K. U. Dharmendra, and K. Binodk, "A novel compact self-similar fractal UWB MIMO antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, 21632-21641, 2019.
    doi:10.1002/mmce.21632

    21. Muhammad, S. K., A. D. Capobianco, and I. Adnan, "Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines," IET Microwaves, Antennas & Propag., Vol. 11, 997-1002, 2017.
    doi:10.1049/iet-map.2016.1074

    22. Wang, L. L., Z. H. Du, and H. L. Yang, "Compact UWB MIMO antenna with high isolation using fence-type decoupling structure," IEEE Antennas Wireless Propag. Lett., Vol. 18, 1641-1645, 2019.
    doi:10.1109/LAWP.2019.2925857

    23. Rakesh, N. T., S. Prabhakar, and K. K. Binod, "Neutralization technique based two and four port high isolation MIMO antennas for UWB communication," AEU-Int. J. Electron. Commun., Vol. 110, 152828-152850, 2019.
    doi:10.1016/j.aeue.2019.152828

    24. Vutukuyi, S., O. P. Pokkunuri, and T. P. M. Boddapati, "Dual band notched orthogonal 4-element MIMO antenna with isolation for UWB applications," IEEE Access, Vol. 8, 145871-145880, 2020.
    doi:10.1109/ACCESS.2020.3015020

    25. Syedakbar, S., S. Ramesh, and J. Deepa, "Ultra wideband monopole planar MIMO antenna for portable devices," IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 1-4, Karur, India, 2017.

    26. Hasan, M. N., S. Chu, and S. Bashir, "A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications," Microw. Opt. Technol. Lett., Vol. 61, 2141-2149, 2019.
    doi:10.1002/mop.31877

    27. Li, Q., A. P. Feresidis, and M. Mavidou, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Trans. Antennas Propag., Vol. 63, 1168-1171, 2015.
    doi:10.1109/TAP.2014.2387871

    28. Roshna, T. K., K. U. Deepa, and P. Mohanaan, "Compact UWB MIMO antenna for tridirectional pattern diversity characteristics," IET Microwaves, Antennas & Propag., Vol. 11, 2059-2065, 2017.
    doi:10.1049/iet-map.2016.0921

    29. Guo, J. Y., F. Liu, and L. Y. Zhao, "Meta-surface antenna array decoupling designs for two linearpolarized antennas coupled in H-plane and E-plane," IEEE Access, Vol. 7, 100442-100452, 2019.
    doi:10.1109/ACCESS.2019.2930687

    30. Luo, S. Y., Y. S. Li, and Y. F. Xia, "A low mutual coupling antenna array with gain enhancement using metamaterial loading and neutralization line structure," Applied Computational Electromagnetics Society Journal, Vol. 34, 411-418, 2019.

    31. Li, H., B. K. Lau, and Z. Ying, "Decoupling of multiple antennas in terminals with chassis excitation using polarization diversity, angle diversity and current control," IEEE Trans. Antennas Propag., Vol. 60, 5947-5957, 2012.
    doi:10.1109/TAP.2012.2213056

    32. Ghalib, A. and M. S. Sharawi, "TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals," IEEE Access, Vol. 5, 19680-19692, 2017.
    doi:10.1109/ACCESS.2017.2739419

    33. Manteuffe, D. and R. Martens, "Compact multimode multielement antenna for indoor UWB massive MIMO," IEEE Trans. Antennas Propag., Vol. 64, 2689-2697, 2016.
    doi:10.1109/TAP.2016.2537388

    34. Erik, F. A., P. M. Angel, and G. V. Ricardo, "Characteristic mode analysis applied to reduce the mutual coupling of a four-element patch MIMO antenna using a defected ground structure," IET Microwaves, Antennas & Propag., Vol. 14, 215-226, 2020.

    35. Zhao, X., S. P. Yeo, and L. C. Ong, "Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes," IEEE Trans. Antennas Propag., Vol. 66, 420-425, 2018.
    doi:10.1109/TAP.2017.2768083

    36. Tang, Z.-J., L. Liang, B. Zhong, L. Cheng, C. Tan, and S. Hu, "Uniplanar UWB-MIMO antenna with high isolation based on the radiator-ground shared structure," Progress In Electromagnetics Research Letters, Vol. 93, 35-42, 2020.
    doi:10.2528/PIERL20062801

    37. Li, K. and Y. Shi, "A pattern reconfigurable MIMO antenna design using characteristic modes," EEE Access, Vol. 6, 43526-43534, 2018.

    38. Liang, Z. P., J. Ouyang, and F. Yang, "Design and characteristic mode analysis of a low-profile wideband patch antenna using metasurface," Journal of Electromagnetic Waves and Applications, Vol. 32, 2304-2313, 2018.
    doi:10.1080/09205071.2018.1507843

    39. Martens, R., E. Safin, and D. Manteuffel, "Inductive and capacitive excitation of the characteristic modes of small terminals," IEEE Loughborough Antennas & Propagation Conference, 1-4, Loughborough, UK, 2011.

    40. Li, K. and Y. Shi, "A pattern reconfigurable MIMO antenna design using characteristic modes," IEEE Access, Vol. 6, 43526-43534, 2018.
    doi:10.1109/ACCESS.2018.2863250

    41. Martens, R. and D. Manteuffel, "Systematic design method of a mobile multiple antenna system using the theory of characteristic modes," IET Microwaves, Antennas & Propag., Vol. 8, 887-893, 2014.
    doi:10.1049/iet-map.2013.0534

    42. Wang, C. H., Y. K. Chen, and S. W. Yang, "Application of characteristic mode theory in HF band aircraft-integrated multi-antenna system designs," IEEE Trans. Antennas Propag., Vol. 67, 513-521, 2019.
    doi:10.1109/TAP.2018.2874800

    43. Kim, D. W. and S. Nam, "Systematic design of a multiport MIMO antenna with bilateral symmetry based on characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, 1076-1085, 2018.
    doi:10.1109/TAP.2017.2787607

    44. Shih, T. Y. and N. Behdad, "Bandwidth enhancement of platform-mounted HF antennas using the characteristic mode theory," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1-12, Vancouver, BC, Canada, 2015.

    45. Kishor, K. K. and S. V. Hum, "Multi-port multi-band chassis-mode antenna design using characteristic modes," IEEE Antennas Wireless Propag. Lett., Vol. 16, 609-612, 2016.
    doi:10.1109/LAWP.2016.2594093

    46. Tang, Z., X. F. Wu, and J. Zhan, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," IEEE Access, Vol. 7, 19856-19865, 2019.
    doi:10.1109/ACCESS.2019.2897170

    47. Khan, M. S., A. D. Capobianco, and S. M. Asif, "A compact CSRR enabled UWB diversity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 808-812, 2016.
    doi:10.1109/LAWP.2016.2604843

    48. Ali, W. and A. Ibrahim, "A compact double-sided MIMO antenna with an improved isolation for UWB applications," AEU-Int. J. Electron. Commun., Vol. 82, 7-13, 2017.
    doi:10.1016/j.aeue.2017.07.031

    49. Gurjar, R., D. K. Upadhyay, B. K. Kanaujia, and A. Kumar, "A compact modified sierpinski carpet fractal UWB MIMO antenna with square-shaped funnel-like ground stub," AEU-Int. J. Electron. Commun., Vol. 117, 1-10, 2020.
    doi:10.1016/j.aeue.2020.153126

    50. Thakur, E., N. Jaglan, S. D. Gupta, and B. Kanaujia, "A compact notched UWB MIMO antenna with enhanced performance," Progress In Electromagnetics Research C, Vol. 91, 39-53, 2019.
    doi:10.2528/PIERC18120202

    51. Khan, S. M., A. Iftikhar, S. M. Asif, A. D. Capobianco, and B. D. Braaten, "A compact four elements UWB MIMO antenna with on-demand WLAN rejection," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 270-276, 2016.
    doi:10.1002/mop.29546

    52. Wani, Z. and D. Kumar, "A compact 4 × 4 MIMO antenna for UWB applications," Microw. Opt. Technol. Lett., Vol. 58, 1433-1436, 2016.
    doi:10.1002/mop.29840

    53. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and S. Kumar, "An ultra-compact two-port UWB-MIMO antenna with dual band-notched characteristics," AEU-Int. J. Electron. Commun., Vol. 114, 1-12, 2020.