Vol. 117

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-02

Wideband Four-Port Compact Millimeter-Wave MIMO Antenna Configuration through Defected Ground Structure for Forthcoming 5G Handheld Devices

By Abdullah, Hamza Ahmad, MuhibUr Rahman, Muhammad Haris, and Muhammad Salman
Progress In Electromagnetics Research C, Vol. 117, 173-184, 2021
doi:10.2528/PIERC21111801

Abstract

We presented a miniaturized defected ground structure-based millimeter-wave (MMW) contemporary MIMO antenna for 5G smart applications devices. The proposed MIMO antenna offers many advantages including high gain, compactness, planar geometry, wide impedance bandwidth, and reduced mutual coupling effects performance. The top layer of the proposed four-port MIMO antenna design comprises 1x2 rectangular patch array structures, with each placed at the middle of a 20x20 mm2 substrate of material (RO4350B) having thickness of 0.76 mm and loss tangent of 0.0037. For miniaturization and better performance, both the ground layer and radiating patches are defected with slots of a rectangular shape while an E-shaped slot is placed at the center of the ground plane. The operating impedance bandwidth of the proposed antenna ranges from 26.4 to 30.9 GHz incorporating the dominant portion of the mm-wave band. The proposed MIMO antenna is also characterized by the fundamental MIMO performance metrics such as Envelope Correlation Coefficient (ECC) which is less than 0.12 for any two-element array that encounters the mandatory standard of <0.5, high Diversity gain (DG) reaching its ideal value of 10 as well as minimum isolation of -19 dB with a total efficiency of 85% at 28 GHz. These characteristics make the proposed compact four-port MIMO antenna one of the best candidates to be used in 5G portable devices.

Citation


Abdullah, Hamza Ahmad, MuhibUr Rahman, Muhammad Haris, and Muhammad Salman, "Wideband Four-Port Compact Millimeter-Wave MIMO Antenna Configuration through Defected Ground Structure for Forthcoming 5G Handheld Devices," Progress In Electromagnetics Research C, Vol. 117, 173-184, 2021.
doi:10.2528/PIERC21111801
http://www.jpier.org/PIERC/pier.php?paper=21111801

References


    1. Yao, M., M. M. Sohul, X. Ma, V. Marojevic, and J. H. Reed, "Sustainable green networking: Exploiting degrees of freedom towards energy-efficient 5G systems," Wireless Netw., Vol. 25, No. 3, 951-960, 2019.
    doi:10.1007/s11276-017-1626-7

    2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
    doi:10.1109/ACCESS.2013.2260813

    3. Yilmaz, T. and O. B. Akan, "On the use of low terahertz band for 5G indoor mobile networks," Comput. Electr. Eng., Vol. 48, 164-173, 2015.
    doi:10.1016/j.compeleceng.2015.06.012

    4. Rahman, M., M. Naghshvarian Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors, Vol. 18, 3155, 2018.
    doi:10.3390/s18093155

    5. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Comm. Mag., Vol. 52, No. 2, 106-113, 2014.
    doi:10.1109/MCOM.2014.6736750

    6. Khan, T., M. Rahman, A. Akram, Y. Amin, and H. Tenhunen, "A low-cost CPW-fed multiband frequency reconfigurable antenna for wireless applications," Electronics, Vol. 8, 900, 2019.
    doi:10.3390/electronics8080900

    7. Kumar, M. N. and T. Shanmuganantham, "Division shaped substrate integrated waveguide slot antenna for millimeter wireless/automotive radar applications," Comput. Electr. Eng., Vol. 71, 667-675, 2018.
    doi:10.1016/j.compeleceng.2018.08.011

    8. Naqvi, A. H., J. H. Park, C. W. Baek, and S. Lim, "V-band end-fire radiating planar micromachined helical antenna using Through-Glass Silicon Via (TGSV) technology," IEEE Access, Vol. 26, No. 7, 87907-87915, Jun. 2019.
    doi:10.1109/ACCESS.2019.2925073

    9. Saad, A. A. and H. A. Mohamed, "Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks," AEU --- Int. J. Electron. Commun., Vol. 99, 59-69, 2019.
    doi:10.1016/j.aeue.2018.11.029

    10. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "A 28-GHz antenna for 5G MIMO applications," Progress In Electromagnetics Research, Vol. 78, 73-79, 2018.
    doi:10.2528/PIERL18070303

    11. Hussain, N., M. J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
    doi:10.1109/ACCESS.2019.2908441

    12. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
    doi:10.3390/electronics9010071

    13. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw. Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
    doi:10.1049/iet-map.2017.0467

    14. Tu, D. T. T., N. T. B. Phuong, P. D. Son, and V. Van Yem, "Improving characteristics of 28/38 GHz MIMO antenna for 5G applications by using double-side EBG structure," J. Commun., Vol. 14, No. 1, 1-8, 2019.
    doi:10.12720/jcm.14.1.1-8

    15. Rahman, M., A. Haider, and M. Naghshvarianjahromi, "A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 482-486, Mar. 2020.
    doi:10.1109/LAWP.2020.2972025

    16. Zhang, Y., J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 4, 747-751, 2019.
    doi:10.1109/LAWP.2019.2901961

    17. Khan, T. and M. Rahman, "Design of low-profile frequency reconfigurable antenna for multiband applications," International Journal of Electronics Letters, 1-18, 2020.
    doi:10.1080/21681724.2020.1818836

    18. Parvathi, K. S. and S. R. Gupta, "Novel dual-band EBG structure to reduce mutual coupling of air gap based MIMO antenna for 5G application," AEU --- International Journal of Electronics and Communications, Vol. 138, 153902, 2021.
    doi:10.1016/j.aeue.2021.153902

    19. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, 2174, 2017.
    doi:10.3390/s17102174

    20. Rahman, M., M. Nagshvarian Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, 158, 2019.
    doi:10.3390/electronics8020158

    21. Park, J., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
    doi:10.1109/ACCESS.2019.2923330

    22. Iffat Naqvi, S., N. Hussain, A. Iqbal, M. Rahman, M. Forsat, S. S. Mirjavadi, and Y. Amin, "Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals," Sensors, Vol. 20, 3926, 2020.
    doi:10.3390/s20143926

    23. Hussain, N., M. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
    doi:10.1109/ACCESS.2019.2908441

    24. Zhang, Y., J. Deng, M. Li, D. Sun, and L. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, 2019.
    doi:10.1109/LAWP.2019.2901961

    25. Ikram, M., Y. Wang, M. S. Sharawi, and A. Abbosh, "A novel connected PIFA array with MIMO configuration for 5G mobile applications," 2018 Australian Microwave Symposium (AMS), 19-20, Brisbane, QLD, 2018.

    26. Iqbal, A., et al., "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.
    doi:10.1109/ACCESS.2019.2933913